Skip to main content
Log in

Interaction of light and semiconductor can generate quantum states required for solid-state quantum computing: entangled, steered and other nonclassical states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Proposals for solid-state quantum computing are extremely promising as they can be used to build room temperature quantum computers. If such a quantum computer is ever built, it would require built-in sources of nonclassical states required for various quantum information processing tasks. Possibilities of generation of such nonclassical states are investigated here for a physical system composed of a monochromatic light coupled to a two-band semiconductor with direct band gap. The model Hamiltonian includes both photon–exciton and exciton–exciton interactions. Time evolution of the relevant bosonic operators is obtained analytically by using a perturbative technique that provides operator solution for the coupled Heisenberg’s equations of motion corresponding to the system Hamiltonian. The bosonic operators are subsequently used to study the possibilities of observing single- and two-mode squeezing and antibunching after interaction in the relevant modes of light and semiconductor. Further, entanglement between the exciton and photon modes is reported. Finally, the nonclassical effects have been studied numerically for the open quantum system scenario. In this situation, the nonlocal correlations between two modes are shown to violate EPR steering inequality. The observed nonclassical features, induced due to exciton–exciton pair interaction, can be controlled by the phase of input field, and the correlations between two modes are shown to enhance due to nonclassicality in the input field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Glauber, R.J.: The quantum theory of optical coherence. Phys. Rev. 130, 2529 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  2. Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  3. Walls, D.F.: Evidence for the quantum nature of light. Nature 280, 451 (1979)

    Article  ADS  Google Scholar 

  4. Kimble, H.J., Dagenais, M., Mandel, L.: Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691 (1977)

    Article  ADS  Google Scholar 

  5. Loudon, R., Knight, P.L.: Squeezed light. J. Mod. Opt. 34, 709 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  6. Walls, D.F.: Squeezed states of light. Nature 306, 141 (1983)

    Article  ADS  Google Scholar 

  7. Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Camb. Philos. Soc. 31, 555 (1935)

    Article  ADS  Google Scholar 

  8. Reid, M.D.: Demonstration of the Einstein–Podolsky–Rosen paradox using nondegenerate parametric amplification. Phys. Rev. A 40, 913 (1989)

    Article  ADS  Google Scholar 

  9. Harris, S.E.: Lasers without inversion: interference of lifetime-broadened resonances. Phys. Rev. Lett. 62, 1033 (1989)

    Article  ADS  Google Scholar 

  10. Scully, M.O.: Enhancement of the index of refraction via quantum coherence. Phys. Rev. Lett. 67, 1855 (1991)

    Article  ADS  Google Scholar 

  11. Harris, S.E., Field, J.E., Imamoğlu, A.: Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64, 1107 (1990)

    Article  ADS  Google Scholar 

  12. Dowling, J.P., Bowden, C.M.: Piezophotonic switching due to local field effects in a coherently prepared medium of three-level atoms. Phys. Rev. Lett. 70, 1421 (1993)

    Article  ADS  Google Scholar 

  13. Alzetta, G., Gozzini, A., Moi, L., Orriols, G.: An experimental method for the observation of r.f. transitions and laser beat resonances in oriented Na vapour. Nuovo Cimento B 36, 5 (1976)

    Article  ADS  Google Scholar 

  14. Abott, F., et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New Delhi (2008)

    MATH  Google Scholar 

  16. Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013)

    MATH  Google Scholar 

  17. Vogel, K., Akulin, V.M., Schleich, W.P.: Quantum state engineering of the radiation field. Phys. Rev. Lett. 71, 1816 (1993)

    Article  ADS  Google Scholar 

  18. Sperling, J., Vogel, W., Agarwal, G.S.: Quantum state engineering by click counting. Phys. Rev. A 89, 043829 (2014)

    Article  ADS  Google Scholar 

  19. Miranowicz, A., Leoński, W.: Optical-state truncation and teleportation of qudits by conditional eight-port interferometry. J. Opt. B Quantum Semiclass. Opt. 6, S43 (2004)

    Article  ADS  Google Scholar 

  20. Karimi, A., Tavassoly, M.K.: Generation of entangled coherent-squeezed states: their entanglement and nonclassical properties. Quantum Inf. Process. 15, 1513 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  21. Meher, N., Sivakumar, S.: Number state filtered coherent state. Quantum Inf. Process. 17, 233 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  23. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984)

  24. Thapliyal, K., Pathak, A., Sen, B., Peřina, J.: Higher order nonclassicalities in a codirectional nonlinear optical coupler: quantum entanglement, squeezing and antibunching. Phys. Rev. A 90, 013808 (2014)

    Article  ADS  Google Scholar 

  25. Thapliyal, K., Pathak, A., Sen, B., Peřina, J.: Nonclassical properties of a contradirectional nonlinear optical coupler. Phys. Lett. A 378, 3431 (2014)

    Article  ADS  Google Scholar 

  26. Giri, S.K., Sen, B., Ooi, C.H.R., Pathak, A.: Single-mode and intermodal higher-order nonclassicalities in two-mode Bose–Einstein condensates. Phys. Rev. A 89, 033628 (2014)

    Article  ADS  Google Scholar 

  27. Giri, S.K., Thapliyal, K., Sen, B., Pathak, A.: Nonclassicality in an atom-molecule Bose–Einstein condensate: higher-order squeezing, antibunching and entanglement. Phys. A Stat. Mech. Appl. 466, 140 (2017)

    Article  MathSciNet  Google Scholar 

  28. Sen, B., Giri, S.K., Mandal, S., Ooi, C.H.R., Pathak, A.: Intermodal entanglement in Raman processes. Phys. Rev. A 87, 022325 (2013)

    Article  ADS  Google Scholar 

  29. Giri, S.K., Sen, B., Pathak, A., Jana, P.C.: Higher-order two-mode and multimode entanglement in Raman processes. Phys. Rev. A 93, 012340 (2016)

    Article  ADS  Google Scholar 

  30. Thapliyal, K., Pathak, A., Sen, B., Peřina, J.: Lower- and higher-order nonclassical features in non-degenerate hyper-Raman processes. Opt. Commun. 444, 111 (2019)

    Article  ADS  Google Scholar 

  31. Alam, N., Thapliyal, K., Pathak, A., Sen, B., Verma, A., Mandal, S.: Lower-and higher-order nonclassicality in a Bose-condensed optomechanical-like system and a Fabry–Perot cavity with one movable mirror: squeezing, antibunching and entanglement. Eur. Phys J. D (2019). (in press)

  32. De Rinaldis, S., D’Amico, I., Biolatti, E., Rinaldi, R., Cingolani, R., Rossi, F.: Intrinsic exciton–exciton coupling in GaN-based quantum dots: application to solid-state quantum computing. Phys. Rev. B 65, 081309 (2002)

    Article  ADS  Google Scholar 

  33. Hu, X., Sarma, S.D.: Hilbert-space structure of a solid-state quantum computer: two-electron states of a double-quantum-dot artificial molecule. Phys. Rev. A 61, 062301 (2000)

    Article  ADS  Google Scholar 

  34. Pfaff, W., Hensen, B.J., Bernien, H., van Dam, S.B., Blok, M.S., Taminiau, T.H., Tiggelman, M.J., et al.: Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  35. Ardavan, A., Austwick, M., Benjamin, S.C., Briggs, G.A.D., Ferguson, A., Hasko, D.G., Kanai, M., et al.: Nanoscale solid-state quantum computing. Philos. Trans. R. Soc. Lond. A Math. Phys. Engi. Sci. 361, 1473 (2003)

    Article  ADS  Google Scholar 

  36. Fox, A.M., Baumberg, J.J., Dabbicco, M., Huttner, B., Ryan, J.F.: Squeezed light generation in semiconductors. Phys. Rev. Lett. 74, 1728 (1995)

    Article  ADS  Google Scholar 

  37. Rudner, M.S., Vandersypen, L.M.K., Vuletić, V., Levitov, L.S.: Generating entanglement and squeezed states of nuclear spins in quantum dots. Phys. Rev. Lett. 107, 206806 (2011)

    Article  ADS  Google Scholar 

  38. Baskoutas, S., Jannussis, A., Yianoulis, P.: Displaced squeezed number states of the phonon field in polar semiconductors. Phys. Rev. B 54, 8586 (1996)

    Article  ADS  Google Scholar 

  39. Zeytinoğlu, S., Roth, C., Huber, S., Ímamoğlu, A.: Atomically thin semiconductors as nonlinear mirrors. Phys. Rev. A 96, 031801 (2017)

    Article  ADS  Google Scholar 

  40. An, N.B., Hoa, T.T.: Exciton squeezed state in optically excited semiconductors. Phys. Lett. A 180, 145 (1993)

    Article  Google Scholar 

  41. An, N.B.: Exciton-induced squeezed state of light in semiconductors. Phys. Rev. B 48, 11732 (1993)

    Article  ADS  Google Scholar 

  42. An, N.B.: Squeezed excitons in semiconductors. Mod. Phys. Lett. B 5, 587 (1991)

    Article  ADS  Google Scholar 

  43. An, N.B.: Light squeezing via exciton–exciton interaction in semiconductors. Quantum Opt. J. Eur. Opt. Soc. Part B 4, 397 (1992)

    Article  ADS  Google Scholar 

  44. An, N.B., Tinh, V.: Polariton-added mechanism for nonclassical exciton production. Int. J. Mod. Phys. B 13, 73 (1999)

    Article  ADS  Google Scholar 

  45. Tinh, V., Nha, D.H., An, N.B.: Biexciton squeezing due to optical exciton–biexciton conversion. Int. J. Mod. Phys. B 14, 91 (2000)

    Article  ADS  Google Scholar 

  46. Tinh, V., An, N.B.: Biexciton \(k\)th power amplitude squeezing due to optical exciton biexciton conversion. Int. J. Mod. Phys. B 14, 877 (2000)

    ADS  Google Scholar 

  47. An, N.B.: Higher-order amplitude squeezing of photons propagating through a semiconductor. Phys. Lett. A 234, 45 (1997)

    Article  Google Scholar 

  48. Agarwal, G.S., Puri, R.R.: Collapse and revival phenomenon in the evolution of a resonant field in a Kerr-like medium. Phys. Rev. A 39, 2969 (1989)

    Article  ADS  Google Scholar 

  49. Sen, B., Mandal, S.: Squeezed states in spontaneous Raman and in stimulated Raman processes. J. Mod. Opt. 52, 1789 (2005)

    Article  ADS  Google Scholar 

  50. Sen, B., Mandal, S., Peřina, J.: Quantum statistical properties of the radiation field in spontaneous Raman and stimulated Raman processes. J. Phys. B At. Mol. Opt. Phys. 40, 1417 (2007)

    Article  ADS  Google Scholar 

  51. Sen, B., Mandal, S.: Amplitude-squared and amplitude-cubed squeezing in stimulated Raman and in spontaneous Raman scattering. J. Mod. Opt. 55, 1697 (2008)

    Article  ADS  Google Scholar 

  52. Peřina, J.: Quantum Statistics of Linear and Nonlinear Optical Phenomena. Kluwer, Dordrecht (1991)

    Book  Google Scholar 

  53. Peřina Jr., J., Peřina, J.: Quantum statistics of nonlinear optical couplers. In: Wolf, E. (ed.) Progress in Optics, vol. 41, p. 361. Elsevier, Amsterdam (2000)

    MATH  Google Scholar 

  54. Thapliyal, K., Pathak, A., Peřina, J.: Linear and nonlinear quantum Zeno and anti-Zeno effects in a nonlinear optical coupler. Phys. Rev. A 93, 022107 (2016)

    Article  ADS  Google Scholar 

  55. Johansson, J.R., Nation, P.D., Nori, F.: QuTiP 2: a python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184, 1234 (2013)

    Article  ADS  Google Scholar 

  56. Johansson, J.R., Nation, P.D., Nori, F.: QuTiP: an open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 183, 1760 (2012)

    Article  ADS  Google Scholar 

  57. Hillery, M., Zubairy, M.S.: Entanglement conditions for two-mode states. Phys. Rev. Lett. 96, 050503 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  58. Hillery, M., Zubairy, M.S.: Entanglement conditions for two-mode states: applications. Phys. Rev. A 74, 032333 (2006)

    Article  ADS  Google Scholar 

  59. Hillery, M., Dung, H.T., Zheng, H.: Conditions for entanglement in multipartite systems. Phys. Rev. A 81, 062322 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  60. Duan, L.M., Giedke, G., Cirac, J.I., Zoller, P.: Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2722 (2000)

    Article  ADS  Google Scholar 

  61. Skrzypczyk, P., Navascués, M., Cavalcanti, D.: Quantifying Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 112, 180404 (2014)

    Article  ADS  Google Scholar 

  62. He, Q.Y., Drummond, P.D., Olsen, M.K., Reid, M.D.: Einstein–Podolsky–Rosen entanglement and steering in two-well Bose–Einstein-condensate ground states. Phys. Rev. A 86, 023626 (2012)

    Article  ADS  Google Scholar 

  63. Naikoo, J., Thapliyal, K., Pathak, A., Banerjee, S.: Quantum Zeno effect and nonclassicality in a PT-symmetric system of coupled cavities. Phys. Rev. A 97, 063840 (2018)

    Article  ADS  Google Scholar 

  64. Ma, Y.H., Wu, E., Zhang, X.F., Dong, Y.H., Han, X.G.: Entanglement generated in a semiconductor microcavity. Int. J. Theor. Phys. 50, 3205 (2011)

    Article  Google Scholar 

  65. O’Brien, J.L., Furusawa, A., Vučković, J.: Photonic quantum technologies. Nat. Photon. 3, 687 (2009)

    Article  ADS  Google Scholar 

  66. Braunstein, S.L., Loock, P.V.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

AP thanks Department of Science and Technology (DST), India, for the support provided through the project number EMR/2015/000393. KT thanks the project LO1305 of the Ministry of Education, Youth and Sports of the Czech Republic for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Pathak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhopadhyay, A., Sen, B., Thapliyal, K. et al. Interaction of light and semiconductor can generate quantum states required for solid-state quantum computing: entangled, steered and other nonclassical states. Quantum Inf Process 18, 234 (2019). https://doi.org/10.1007/s11128-019-2344-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2344-0

Keywords

Navigation