Skip to main content
Log in

Quantum calculations on quantum dots in semiconductor microcavities. Part I

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

Solid hybrid systems formed by interacting semiconductor quantum dots and high-Q optical cavities based on various defects in photonic crystals are considered. General information on the types of solid optical structures and fundamentals of their spectra and dynamics description are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vahala, K.J., Optical microcavities, Nature, 2003, vol. 424, p. 839.

    Article  Google Scholar 

  2. Confined Photon Systems: Fundamentals and Applications. Lectures from the Summerschool Held in Cargese, Corsica, Benisty, H., Gerard, J.M., Houdre, R., Rarity, J., and Weisbuch, C., Eds., Springer-Verlag Berlin Heidelberg, 1999, pp. 3–15.

    Google Scholar 

  3. Photonic Microresonator Research and Applications, Chremmos, I., Schwelb, O., and Uzunoglu, N., Eds., Springer Series in Optical Sciences, Springer, 2010.

    Google Scholar 

  4. Khitrova, G., Gibbs, H.M., Kira, M., Koch, S.W., and Scherer, A., Vacuum Rabi splitting in semiconductors, Nature Phys., 2006, vol. 2, p. 81.

    Article  Google Scholar 

  5. Sakoda, K., Optical Properties of Photonic Crystals, Springer, 2001.

    Book  Google Scholar 

  6. Lourtioz, J.-M., Benisty, H., Berger, V., Gerard, J.-M., Maystre, D., and Tchelnokov, A., Photonic Crystals. Towards Nanoscale Photonic Devices, Springer, 2005.

    MATH  Google Scholar 

  7. Photonic Crystals: Physics and Technology, Sibilia, C., Benson, T.M., Marciniak, M., and Szoplik, T., Eds., Springer, 2008.

    Google Scholar 

  8. Single Quantum Dots: Fundamentals, Applications and New Concepts. (Topics in Applied Physics), Michler, P., Ed., Springer, 2003.

    Google Scholar 

  9. Quantum Dots: Fundamentals, Applications, and Frontiers, Joyce, B.A., Kelires, P.C., Naumovets, A.G., and Vvedensky, D.D., Eds., NATO Science Series, 2003.

    Google Scholar 

  10. Faraon, A., Majumdar, A., Englund, D., Kim, E., Bajcsy, M., and Vučković, J., Integrated quantum optical networks based on quantum dots and photonic crystals, New. J. Phys., 2011, vol. 13, p. 055025.

    Article  Google Scholar 

  11. Tsukanov, A.V., Quantum dots in photonic molecules and quantum informatics. Part. I, Russian Microelectronics, 2013, vol. 42, no. 6, pp. 325–346.

    Article  Google Scholar 

  12. Tsukanov, A.V., Quantum dots in photonic molecules and quantum informatics. Part. II, Russian Microelectronics, 2013, vol. 43, no. 3, pp. 165–180.

    Article  Google Scholar 

  13. Dvurechenskii, A.V. and Yakimov, A.I., Type-II Ge/Si quantum dots, Semicond., 2001, vol. 35, no. 9, pp. 1095–1105.

    Article  Google Scholar 

  14. Zinov’ev, V.A., Dvurechenskii, A.V., Kuchinskaya, P.A., Armbrister, V.A., and Mudryi, A.V., Formation of ordered quantum dot groups at Ge/Si heteroepitaxy, Avtometriya, 2013, vol. 49, p. 6.

    Google Scholar 

  15. Schneider, C., Huggenberger, A., Sünner, T., and Heindel, T., Strauss, M., Göpfert, S., Weinmann, P., Reitzenstein, S., Worschech, L., Kamp, M., Höfling, S., and Forchel, A., Single site-controlled In(Ga)As/GaAs quantum dots: growth, properties and device integration, Nanotecnology, 2009, vol. 20, p. 434012.

    Article  Google Scholar 

  16. Stumpf, W.C., Fujita, M., Yamaguchi, M., Asano, T., and Noda, S., Light-emission properties of quantum dots embedded in a photonic double-heterostructure nanocavity, Appl. Phys. Lett., 2007, vol. 90, p. 231101.

    Article  Google Scholar 

  17. Yoshie, T., Scherer, A., Hendrickson, J., Khitrova, G., Gibbs, H.M., Rupper, G., Ell, C., Shchekin, O.B., and Deppe, D.G., Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity, Nature, 2004, vol. 432, p. 200.

    Article  Google Scholar 

  18. Ma, J., Ji, X., Wang, G., Wei, X., Lu, H., Yi, X., Duan, R., Wang, J., Zeng, Y., Li, J., Yang, F., Wang, C., and Zou, G., Anomalous temperature dependence of photoluminescence in self-assembled InGaN quantum dots, Appl. Phys. Lett., 2012, vol. 101, p. 131101.

    Article  Google Scholar 

  19. Cha, K.M., Shibata, K., and Hirakawa, K., Single electron transport through site-controlled InAs quantum dots, Appl. Phys. Lett., 2012, vol. 101, p. 223115.

    Article  Google Scholar 

  20. Dias, N.L., Garg, A., Reddy, U., Young, J.D., Verma, V.B., Mirin, R.P., and Coleman, J.J., Directed self-assembly of InAs quantum dots on nano-oxide templates, Appl. Phys. Lett., 2011, vol. 98, p. 141112.

    Article  Google Scholar 

  21. Gallo, P., Felici, M., Dwir, B., Atlasov, K.A., Karlsson, K.F., Rudra, A., Mohan, A., Biasiol, G., Sorba, L., and Kapon, E., Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities, Appl. Phys. Lett., 2008, vol. 92, p. 263101.

    Article  Google Scholar 

  22. Kojima, T., Kojima, K., Asano, T., and Noda, S., Accurate alignment of a photonic crystal nanocavity with an embedded quantum dot based on optical microscopic photoluminescence imaging, Appl. Phys. Lett., 2013, vol. 102, p. 011110.

    Article  Google Scholar 

  23. Ohta, R., Ota, Y., Nomura, M., Kumagai, N., Ishida, S., Iwamoto, S., and Arakawa, Y., Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot, Appl. Phys. Lett., 2011, vol. 98, p. 173104.

    Article  Google Scholar 

  24. Vučković, J. and Yamamoto, Y., Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot, Appl. Phys. Lett., 2003, vol. 82, p. 2374.

    Article  Google Scholar 

  25. Hennessy, K., Badolato, A., and Tamboli, A., Petroff P.M., Hua E., Atatüre, M., Dreiser, J., and Imamoǧlu, A., Tuning photonic crystal nanocavity modes by wet chemical digital etching, Appl. Phys. Lett., 2005, vol. 87, p. 021108.

    Article  Google Scholar 

  26. Hennessy, K., Reese, C., Badolato, A., Wang, C.F., Imamoǧlu, A., Petroff, P.M., Hua, E., Jin, G., Shi, S., and Prather, D.W., Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots, Appl. Phys. Lett., 2003, vol. 83, p. 3650.

    Article  Google Scholar 

  27. Hennessy, K., Badolato, A., Winger, M., Gerace, D., Atatüre, M., Gulde, S., Fält, S., Hu, E.L., and Imamoǧlu, A., Quantum nature of a strongly coupled single quantum dot-cavity system, Nature, 2007, vol. 445, p. 896.

    Article  Google Scholar 

  28. Hagemeier, J., Bonato, C., Truong, T.-A., Kim, H., Beirne, G.J., Bakker, M., van Exter, M.P., Luo, Y., Petroff, P., and Bouwmeester, D., H1 photonic crystal cavities for hybrid quantum information protocols, Optics Express, 2012, vol. 20, p. 24714.

    Article  Google Scholar 

  29. Tandaechanurat, A., Ishida, S., Aoki, K., Guimard, D., Nomura, M., Iwamoto, S., and Arakawa, Y., Demonstration of high-Q (>8600) three-dimensional photonic crystal nanocavity embedding quantum dots, Appl. Phys. Lett., 2009, vol. 94, p. 171115.

    Article  Google Scholar 

  30. Aoki, K., Guimard, D., Nishioka, M., Nomura, M., Iwamoto, S., and Arakawa, Y., Coupling of quantumdot light emission with a three-dimensional photonic crystal nanocavity, Nature Photon, 2008, vol. 2, p. 688.

    Article  Google Scholar 

  31. Yoshie, T., Vučković, J., Scherer, A., Chen, H., and Deppe, D., High quality two-dimensional photonic crystal slab cavities, Appl. Phys. Lett., 2001, vol. 79, p. 4289.

    Article  Google Scholar 

  32. Schneider, C., Heindel, T., Huggenberger, A., Weinmann, P., Kistner, C., Kamp, M., Reitzenstein, S., Höfling, S., and Forchel, A., Single photon emission from a site-controlled quantum dot-micropillar cavity system, Appl. Phys. Lett., 2009, vol. 94, p. 111111.

    Article  Google Scholar 

  33. Srinivasan, K. and Painter, O., Linear and nonlinear optical spectroscopy of a strongly coupled microdiskquantum dot system, Nature, 2007, vol. 450, p. 862.

    Article  Google Scholar 

  34. Heylman, K.D. and Goldsmith, R.H., Photothermal mapping and free-space laser tuning of toroidal optical microcavities, Appl. Phys. Lett., 2013, vol. 103, p. 211116.

    Article  Google Scholar 

  35. Xie, Z.G. and Solomon, G.S., Spatial ordering of quantum dots in microdisks, Appl. Phys. Lett., 2005, vol. 87, p. 093106.

    Article  Google Scholar 

  36. Hennessy, K., Högerle, C., Hu, E., Badolato, A., and Imamolu, A., Tuning photonic nanocavities by atomic force microscope nanooxidation, Appl. Phys. Lett., 2006, vol. 89, p. 041118.

    Article  Google Scholar 

  37. Chen, W.-Y., Chen, M.-J., Cheng, C.-C., Hsu, T.M., Wang, C.-J., and Chyi, J.-I., Imaging resonant modes in photonic crystal nanocavity by atomic force microscope nano-oxidation, Appl. Phys. Lett., 2011, vol. 98, p. 191110.

    Article  Google Scholar 

  38. Mosor, S., Hendrickson, J., Richards, B.C., Sweet, J., Khitrova, G., Gibbs, H.M., Yoshie, T., Scherer, A., Shchekin, O.B., and Deppe, D.G., Scanning a photonic crystal slab nanocavity by condensation of xenon, Appl. Phys. Lett., 2005, vol. 87, p. 141105.

    Article  Google Scholar 

  39. Strauf, S., Rakher, M.T., Carmeli, I., Hennessy, K., Meier, C., Badolato, A., DeDood, M.J.A., Petroff, P.M., Hu, E.L., Gwinn, E.G., and Bouwmeester, D., Frequency control of photonic crystal membrane resonators by monolayer deposition, Appl. Phys. Lett., 2006, vol. 88, p. 043116.

    Article  Google Scholar 

  40. Lu, T.-W., Lin, P.-T., Sio, K.-U., and Lee, P.-T., Optical sensing of square lattice photonic crystal pointshifted nanocavity for protein adsorption detection, Appl. Phys. Lett., 2010, vol. 96, p. 213702.

    Article  Google Scholar 

  41. Fushman, I., Waks, E., Englund, D., Stoltz, N., Petroff, P., and Vučković, J., Ultrafast nonlinear optical tuning of photonic crystal cavities, Appl. Phys. Lett., 2007, vol. 90, p. 091118.

    Article  Google Scholar 

  42. Faraon, A., Englund, D., Fushman, I., and Vučković, J., Local quantum dot tuning on photonic crystal chips, Appl. Phys. Lett., 2007, vol. 90, p. 213110.

    Article  Google Scholar 

  43. Faraon, A. and Vučković, J., Local temperature control of photonic crystal devices via micron scale electrical heaters, Appl. Phys. Lett., 2009, vol. 95, p. 043102.

    Article  Google Scholar 

  44. Sridharan, D., Waks, E., Solomon, G., and Fourkas, J.T., Reversible tuning of photonic crystal cavities using photochromic thin films, Appl. Phys. Lett., 2010, vol. 96, p. 153303.

    Article  Google Scholar 

  45. Faraon, A., Englund, D., Bulla, D., Luther-Davies, B., Eggleton, B.J., Stoltz, N., Petroff, P., and Vučković, J., Local tuning of photonic crystal cavities using chalcogenide glasses, Appl. Phys. Lett., 2008, vol. 92, p. 043123.

    Article  Google Scholar 

  46. Vignolini, S., Riboli, F., Wiersma, D.S., Balet, L., Li, L.H., Francardi, M., Gerardino, A., Fiore, A., Gurioli, M., and Intonti, F., Nanofluidic control of coupled photonic crystal resonators, Appl. Phys. Lett., 2010, vol. 96, p. 141114.

    Article  Google Scholar 

  47. Faraon, A., Majumdar, A., Kim, H., Petroff, P., and Vučković, J., Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity, Phys. Rev. Lett., 2010, vol. 104, p. 047402.

    Article  Google Scholar 

  48. Kim, H., Thon, S.M., Petroff, P.M., and Bouwmeester, D., Independent tuning of quantum dots in a photonic crystal cavity, Appl. Phys. Lett., 2009, vol. 95, p. 243107.

    Article  Google Scholar 

  49. Bose, R., Cai, T., Solomon, G.S., and Waks, E., Alloptical tuning of a quantum dot in a coupled cavity system, Appl. Phys. Lett., 2012, vol. 100, p. 231107.

    Article  Google Scholar 

  50. Kim, H., Shen, T.C., Sridharan, D., Solomon, G.S., and Waks, E., Magnetic field tuning of a quantum dot strongly coupled to a photonic crystal cavity, Appl. Phys. Lett., 2011, vol. 98, p. 091102.

    Article  Google Scholar 

  51. Schleich, W.P., Quantum Optics in Phase Space, Weinheim: Wiley-VCH, 2005.

    Google Scholar 

  52. Noda, S., Fujita, M., and Asano, T., Spontaneousemission control by photonic crystals and nanocavities, Nature Photon, 2007, vol. 1, p. 449.

    Article  Google Scholar 

  53. Gardiner, C.W., Quantum Noise, Berlin: Springer, 1991.

    Book  MATH  Google Scholar 

  54. Walls, D.F. and Milburn, G.J., Quantum Optics, Berlin: Springer, 2008.

    Book  MATH  Google Scholar 

  55. Majumdar, A., Englund, D., Michal Bajcsy, M., and Vučković, J., Nonlinear temporal dynamics of a strongly coupled quantum-dot-cavity system, Phys. Rev. A, 2012, vol. 85, p. 033802.

    Article  Google Scholar 

  56. Majumdar, A., Faraon, A., Kim, E.D., Englund, D., Kim, H., Petroff, P., and Vučković, J., Linewidth broadening of a quantum dot coupled to an off-resonant cavity, Phys. Rev. B, 2010, vol. 82, p. 045306.

    Article  Google Scholar 

  57. Majumdar, A., Kim, E.D., Gong, Y., Bajcsy, M., and Vučković, J., Phonon mediated off-resonant quantum dot-cavity coupling under resonant excitation of the quantum dot, Phys. Rev. B, 2011, vol. 84, p. 085309.

    Article  Google Scholar 

  58. Kaer, P., Nielsen, T.R., Lodahl, P., Jauho, A.-P., and Mork, J., Microscopic theory of phonon-induced effects on semiconductor quantum dot decay dynamics in cavity QED, Phys. Rev. B, 2012, vol. 86, p. 085302.

    Article  Google Scholar 

  59. Hohenester, U., Cavity quantum electrodynamics with semiconductor quantum dots: role of phonon-assisted cavity feeding, Phys. Rev. B, 2010, vol. 81, p. 155303.

    Article  Google Scholar 

  60. Majumdar, A., Papageorge, A., Kim, E.D., Bajcsy, M., Kim, H., Petroff, P., and Vučković, J., Probing of single quantum dot dressed states via an off-resonant cavity, Phys. Rev. B, 2011, vol. 84, p. 085310.

    Article  Google Scholar 

  61. Papageorge, A., Majumdar, A., Kim, E.D., and Vučković, J., Bichromatic driving of a solid-state cavity quantum electrodynamics system, New. J. Phys., 2012, vol. 14, p. 013028.

    Article  Google Scholar 

  62. Harsij, Z., Harouni, M.B., Roknizadeh, R., and Naderi, M.H., Influence of electron-phonon interaction on the optical spectrum and quantum statistics in a quantum-dot-cavity system: master-equation approach, Phys. Rev. A, 2012, vol. 86, p. 063803.

    Article  Google Scholar 

  63. Kaer, P., Nielsen, T.R., Lodahl, P., Jauho, A.-P., and Mork, J., Non-Markovian model of photon-assisted dephasing by electron-phonon interactions in a coupled quantum-dot-cavity system, Phys. Rev. Lett., 2010, vol. 104, p. 157401.

    Article  Google Scholar 

  64. Madsen, K.H., Kaer, P., Kreiner-Møller, A., Stobbe, S., Nysteen, A., Mørk, J., and Lodahl, P., Measuring the effective phonon density of states of a quantum dot in cavity quantum electrodynamics, Phys. Rev. B, 2013, vol. 88, p. 045316.

    Article  Google Scholar 

  65. Hughes, S. and Carmichael, H.J., Phonon-mediated population inversion in a semiconductor quantum-dot cavity system, New. J. Phys., 2013, vol. 15, p. 053039.

    Article  Google Scholar 

  66. Kaer, P., Lodahl, P., Jauho, A.-P., and Mørk, J., Microscopic theory of indistinguishable single-photon emission from a quantum dot coupled to a cavity: the role of non-Markovian phonon-induced decoherence, Phys. Rev. B, 2013, vol. 87, p. 081308.

    Article  Google Scholar 

  67. Madsen, K.H., Ates, S., Lund-Hansen, T., Löffler, A., Reitzenstein, S., Forchel, A., and Lodahl, P., Observation of non-Markovian dynamics of a single quantum dot in a micropillar cavity, Phys. Rev. Lett., 2011, vol. 106, p. 233601.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tsukanov.

Additional information

Original Russian Text © A.V. Tsukanov, I.Yu. Kateev, 2014, published in Mikroelektronika, 2014, Vol. 43, No. 5, pp. 323–336.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsukanov, A.V., Kateev, I.Y. Quantum calculations on quantum dots in semiconductor microcavities. Part I. Russ Microelectron 43, 315–327 (2014). https://doi.org/10.1134/S1063739714050060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739714050060

Keywords

Navigation