Skip to main content
Log in

Decomposition of completely symmetric states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Symmetry is a fundamental milestone of quantum physics, and the relation between entanglement is one of the central mysteries of quantum mechanics. In this paper, we consider a subclass of symmetric quantum states in the bipartite system, namely the completely symmetric states, which is invariant under the index permutation. We investigate the separability of these states. After studying some examples, we conjecture that the completely symmetric state is separable if and only if it is S-separable, i.e., each term in this decomposition is a symmetric pure product state \({|x,x\rangle }{\langle x,x|}\). It was proved to be true when the rank does not exceed \(\max \{4,N+1\}\). After studying the properties of these state, we propose a numerical algorithm which is able to detect S-separability. This algorithm is based on the best separable approximation, which furthermore turns out to be applicable to test the separability of quantum states in bosonic system. Besides, we analyse the convergence behaviour of this algorithm. Some numerical examples are tested to show the effectiveness of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777–780 (1935)

    Article  ADS  Google Scholar 

  2. Schrödinger, E.: Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften 23(49), 823–828 (1935)

    Article  ADS  Google Scholar 

  3. Nielsen, M.A., Chuang, I.L.: Quantum information theory (2002)

  4. Gurvits, L.: Classical deterministic complexity of edmonds’ problem and quantum entanglement. In: Proceedings of the Thirty-fifth Acm Symposium on Theory Of Computing - STOC ’03, pages 10–19. ACM, ACM Press, (2003)

  5. Gharibian, S.: Strong NP-hardness of the quantum separability problem. arXiv preprintarXiv:0810.4507, (2008)

  6. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77(8), 1413–1415 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  7. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223(1–2), 1–8 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  8. Woronowicz, S.L.: Positive maps of low dimensional matrix algebras. Rep. Math. Phys. 10(2), 165–183 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  9. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed quantum states: linear contractions and permutation criteria. Open Syst. Inf. Dyn. 13(01), 103–111 (2006)

    Article  MathSciNet  Google Scholar 

  10. Chruściński, D., Jurkowski, J., Kossakowski, A.: Quantum states with strong positive partial transpose. Phys. Rev. A 77(2), 022113 (2008)

    Article  ADS  Google Scholar 

  11. Ha, K.-C.: Entangled states with strong positive partial transpose. Phys. Rev. A 81(6), 064101 (2010)

    Article  ADS  Google Scholar 

  12. Qian, L.: Separability of multipartite quantum states with strong positive partial transpose. Phys. Rev. A 98, 012307 (2018)

    Article  ADS  Google Scholar 

  13. Kraus, B., Cirac, J.I., Karnas, S., Lewenstein, M.: Separability in2\(\times \)Ncomposite quantum systems. Phys. Rev. A 61(6), 062302 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  14. Horodecki, P., Lewenstein, M., Vidal, G., Cirac, I.: Operational criterion and constructive checks for the separability of low-rank density matrices. Phys. Rev. A 62(3), 032310 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  15. Fei, S.-M., Gao, X.-H., Wang, X.-H., Wang, Z.-X., Ke, W.: Separability and entanglement in \(c^2\otimes c^3\otimes c^n \)composite quantum systems. Phys. Rev. A 68(2), 022315 (2003)

    Article  ADS  Google Scholar 

  16. Li, M., Wang, J., Fei, S.-M., Li-Jost, X.: Quantum separability criteria for arbitrary-dimensional multipartite states. Phys. Rev. A 89, 022325 (2014)

    Article  ADS  Google Scholar 

  17. Doherty, A.C., Parrilo, P.A., Spedalieri, F.M.: Complete family of separability criteria. Phys. Rev. A 69(2), 022308 (2004)

    Article  ADS  Google Scholar 

  18. Ioannou, L.M., Travaglione, B.C., Cheung, D.C., Ekert, A.K.: Improved algorithm for quantum separability and entanglement detection. Phys. Rev. A 70, 060303 (2004)

    Article  ADS  Google Scholar 

  19. Dahl, G., Leinaas, J.M., Myrheim, J., Ovrum, E.: A tensor product matrix approximation problem in quantum physics. Linear Algebra Appl. 420(2–3), 711–725 (2007)

    Article  MathSciNet  Google Scholar 

  20. Bertsekas, D.P.: Nonlinear Programming. Athena scientific Belmont, Belmont (1999)

    MATH  Google Scholar 

  21. Kofidis, E., Regalia, P.A.: On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23(3), 863–884 (2002)

    Article  MathSciNet  Google Scholar 

  22. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40(6), 1302–1324 (2005)

    Article  MathSciNet  Google Scholar 

  23. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  24. Chen, L., Đoković, D.Ž.: Dimensions, lengths, and separability in finite-dimensional quantum systems. J. Math. Phys. 54(2), 022201 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  25. Chen, L., Đoković, D.Ž.: Distillability and PPT entanglement of low-rank quantum states. J. Phys. A: Math. Theor. 44(28), 285303 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  26. Chen, L., Đoković, D.Ž.: Properties and construction of extreme bipartite states having positive partial transpose. Commun. Math. Phys. 323(1), 241–284 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. Nedić, A., Bertsekas, D.P., Ozdaglar, A.E.: Convex Analysis and Optimization, vol. 1. Athena scientific Belmont, Belmont (2005)

    MATH  Google Scholar 

  28. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming. Wiley, Hoboken (2005)

    MATH  Google Scholar 

  29. Pagonis, V., Kitis, G., Furetta, C.: Numerical and Practical Exercises in Thermoluminescence. Springer, New York (2006)

    Google Scholar 

  30. Qi, L., Wang, F., Wang, Y.: Z-eigenvalue methods for a global polynomial optimization problem. Math. Program. 118(2), 301–316 (2007)

    Article  MathSciNet  Google Scholar 

  31. Eckert, K., Schliemann, J., Bruß, D., Lewenstein, M.: Quantum correlations in systems of indistinguishable particles. Ann. Phys. 299(1), 88–127 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  32. Wirtinger, W.: Zur formalen theorie der funktionen von mehr komplexen veränderlichen. Math. Ann. 97(1), 357–375 (1927)

    Article  MathSciNet  Google Scholar 

  33. Guan, Y., Chu, M.T., Chu, D.: SVD-based algorithms for the best rank-1 approximation of a symmetric tensor. SIAM J. Matrix Anal. Appl. 39(3), 1095–1115 (2018)

    Article  MathSciNet  Google Scholar 

  34. Guan, Y., Chu, M.T., Chu, D.: Convergence analysis of an SVD-based algorithm for the best rank-1 tensor approximation. Linear Algebra Appl. 555, 53–69 (2018)

    Article  MathSciNet  Google Scholar 

  35. Chen, L., Chu, D., Qian, L., Shen, Y.: Separability of completely symmetric states in a multipartite system. Phys. Rev. A 99, 032312 (2019)

    Article  ADS  Google Scholar 

  36. Hao, C., Cui, C., Dai, Y.: A feasible trust-region method for calculating extreme z-eigenvalues of symmetric tensors. Pac. J. Optim. 11(2), 291–307 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Li, G., Qi, L., Gaohang, Y.: The z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory. Numer. Linear Algebra Appl. 20(6), 1001–1029 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor and anonymous referees for their comments and suggestions on the earlier version of this paper. The work was supported by NUS Research Grant R-146-000-236-114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilong Qian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Proof of Eq.  (104)

Fig. 9
figure 9

\( x = \cos (\theta )x_{*}+ \sin (\theta )x_{\bot }\)

In this appendix, we prove Eq. (104). Let us describe this question formally with a lemma.

Lemma 29

Let \(x_{*}\) and \(x_{\bot }\) are two orthogonal unit vectors in the \(\mathbb {R}^{N}\) space and

$$\begin{aligned} x = \cos (\theta )x_{*}+ \sin (\theta )x_{\bot },\theta \in [0,2\pi ]. \end{aligned}$$
(175)

Then we have

$$\begin{aligned} \left| \sin (\theta )\right| = \sqrt{\left\| x-x_{*}\right\| ^{2} - \frac{\left\| x-x_{*}\right\| ^4}{4}}. \end{aligned}$$
(176)

Proof

The following graph shows the relations of x,\(x_{*}\), and \(x_{\bot }\) when \(\langle x,x_{*}\rangle >0\) (left one) and \(\langle x,x_{*}\rangle <0\) (right one):

From the above graphs (Fig.  9), we have

$$\begin{aligned} \left\| x-x_{*}\right\| = \left| AB\right| . \end{aligned}$$
(177)

And

$$\begin{aligned} \begin{aligned} \left| OC\right|&= \left| \cos (\theta )\right| ,\\ \left| BC\right|&= 1 - \cos (\theta ),\\ \left| AC\right|&= \sin (\theta ). \end{aligned} \end{aligned}$$
(178)

Moreover,

$$\begin{aligned} \begin{aligned} \left| AB\right|&= \sqrt{\left| AC\right| ^2+\left| BC\right| ^2}\\&= \sqrt{(1-\cos (\theta ))^2+\sin ^2(\theta )}\\&= \sqrt{2-2\cos (\theta )}. \end{aligned} \end{aligned}$$
(179)

Therefore,

$$\begin{aligned} \cos (\theta ) = 1 - \frac{\left| AB\right| ^2}{2}. \end{aligned}$$
(180)

Forward,

$$\begin{aligned} \begin{aligned} \left| \sin (\theta )\right|&= \sqrt{1-\cos ^2(\theta )}\\&= \sqrt{1 - \left( 1-\frac{\left| AB\right| ^2}{2}\right) ^2}\\&= \sqrt{\left| AB\right| ^2-\frac{\left| AB\right| ^2}{4}}\\&= \sqrt{\left\| x-x_{*}\right\| ^{2} - \frac{\left\| x-x_{*}\right\| ^4}{4}}. \end{aligned} \end{aligned}$$
(181)

\(\square \)

Fig. 10
figure 10

Relation between \(x_{\mathrm{SQP}}\) and \(x_{\mathrm{NT}}\)

Proof of Eq. (162)

In this appendix, we prove Eq. (162), that is to prove

$$\begin{aligned} \left\| x_{\mathrm{SQP}}-x_{*}\right\| \leqslant \left\| x_{\mathrm{NT}}-x_*\right\| , \end{aligned}$$
(182)

where \(\left\| x_{\mathrm{SQP}}\right\| \leqslant \left\| x_{\mathrm{NT}}\right\| \) and \(x_{*},x_{\mathrm{SQP}}\) are unit vectors. The following Fig. 10 shows the relationship of \(x_{\mathrm{SQP}}\) and \(x_{\mathrm{NT}}\).

Note that

$$\begin{aligned} \angle OAC = \frac{1}{2}(\pi - \angle AOC). \end{aligned}$$
(183)

Hence,

$$\begin{aligned} \begin{aligned} \angle BAC&= \pi -\angle OAC\\&= \pi - \frac{1}{2}(\pi - \angle AOC)\\&= \frac{\pi }{2}+\frac{1}{2}\angle AOC\\&> \frac{\pi }{2}. \end{aligned} \end{aligned}$$
(184)

Moreover,

$$\begin{aligned} \sin (\angle ABC) \leqslant \sin (\pi - \angle BAC) = \sin (\angle BAC). \end{aligned}$$
(185)

Forward,

$$\begin{aligned} \frac{\left\| x_{\mathrm{SQP}}-x_{*}\right\| }{\left\| x_{NT}-x_{*}\right\| }= \frac{\sin (\angle ABC)}{\sin (\angle BAC)}. \end{aligned}$$
(186)

By Eq. 185, we have

$$\begin{aligned} \frac{\left\| x_{\mathrm{SQP}}-x_{*}\right\| }{\left\| x_{NT}-x_{*}\right\| }\leqslant 1, \end{aligned}$$
(187)

which completes our proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, L., Chu, D. Decomposition of completely symmetric states. Quantum Inf Process 18, 208 (2019). https://doi.org/10.1007/s11128-019-2318-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2318-2

Keywords

Navigation