Skip to main content
Log in

Evaluation of exact quantum query complexities by semidefinite programming

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

One of the difficult tasks in quantum computation is inventing efficient exact quantum algorithms, which are the quantum algorithms that output the correct answer with certainty on any input. We improve and generalize the semidefinite programming (SDP) method of Montanaro et al. (Algorithmica 71:775–796, 2015) in order to evaluate exact quantum query complexities of partial functions. We present a more systematical approach to achieve the “inspired” result by Montanaro et al. for the function \(\text {EXACT}_{2}^{4}\), which is the Boolean function of 4 bits that output only when 2 of the input bits are equal to 1. The same approach also allows us to reduce the size of the ancilla space used by the algorithms that evaluate symmetric functions like \(\text {EXACT}_{3}^{6}\). We employ the generalized SDP to verify the complexities of the earliest and best known quantum algorithms in the literature, namely, Deutsch–Jozsa and Grover algorithms for a small number of input bits. We utilized the method to solve the weight decision problem of bit strings with lengths up to 10 bits and observed that the generalized SDP gives better exact quantum query complexities than the known methods. Finally, we test the method on some selected functions and demonstrate that they all exhibit quantum speedup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Buhrman, H., De Wolf, R.: Complexity measures and decision tree complexity: a survey. Theor. Comput. Sci. 288(1), 21–43 (2002)

    Article  MathSciNet  Google Scholar 

  2. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Ser. A 439(1907), 553–558 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  3. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  4. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1), 210–239 (2007)

    Article  MathSciNet  Google Scholar 

  5. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997)

    Article  MathSciNet  Google Scholar 

  6. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997)

    Article  MathSciNet  Google Scholar 

  7. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  Google Scholar 

  8. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: A limit on the speed of quantum computation in determining parity. Phys. Rev. Lett. 81, 5442–5444 (1998)

    Article  ADS  Google Scholar 

  9. Ambainis, A.: Superlinear advantage for exact quantum algorithms. SIAM J. Comput. 45(2), 617–631 (2016)

    Article  MathSciNet  Google Scholar 

  10. Ambainis, A., Balodis, K., Belovs, A., Lee, T., Santha, M., Smotrovs, J.: Separations in query complexity based on pointer functions. J. ACM 64(5), 1–24 (2017)

    Article  MathSciNet  Google Scholar 

  11. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. J. ACM 48, 778–797 (2001)

    Article  MathSciNet  Google Scholar 

  12. Ambainis, A.: Quantum lower bounds by quantum arguments. J. Comput. Syst. Sci. 64, 750–767 (2002)

    Article  MathSciNet  Google Scholar 

  13. Vazirani, U.: On the power of quantum computation. Philos. Trans. R. Soc. London Ser. A: Math. Phys. Sci. 356 356, 1759–1768 (1998)

    Article  Google Scholar 

  14. Høyer, P., Spalek, R.: Lower bounds on quantum query complexity. Bull. EATCS 87, 78–103 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Barnum, H., Saks, M., Szegedy, M.: Quantum query complexity and semi-definite programming. In: Proceedings of 18th Annual IEEE Conference on Computational Complexity, pp. 179–193. (2003)

  16. Spalek, R., Szegedy, M.: All quantum adversary methods are equivalent. Theory Comput. 2(1), 1–18 (2006)

    Article  MathSciNet  Google Scholar 

  17. Montanaro, A., Jozsa, R., Mitchison, G.: On exact quantum query complexity. Algorithmica 71, 775–796 (2015). arXiv:quant-ph/1111.0475v2

    Article  MathSciNet  Google Scholar 

  18. Gruska, J., Qiu, D., Zheng, S.: Generalizations of the distributed Deutsch–Jozsa promise problem. Math. Struct. Comput. Sci. 27(3), 311–331 (2017)

    Article  MathSciNet  Google Scholar 

  19. Zheng, S., Qiu, D.: From Quantum Query Complexity to State Complexity, Gruska Festschrift. Lecture Notes in Computer Science, vol. 8808, pp. 231–245. Springer, Cham (2014)

    Google Scholar 

  20. Even, S., Selman, A.L., Yacobi, Y.: The complexity of promise problems with applications to public-key cryptography. Inf. Control 61, 159–173 (1984)

    Article  MathSciNet  Google Scholar 

  21. Canteaut, A., Videau, M.: Symmetric boolean functions. IEEE Trans. Inf. Theory 51(8), 2791–2811 (2005)

    Article  MathSciNet  Google Scholar 

  22. Goldreich, O.: On promise problems: a survey. Essays Mem. Shimon Even, LNCS 3895, 254–290 (2006)

    MathSciNet  Google Scholar 

  23. Ambainis, A., Spalek, R., de Wolf, R.: A new quantum lower boundmethod, with applications to direct product theorems and time-space tradeoffs. Algorithmica 55(3), 422–461 (2009)

    Article  MathSciNet  Google Scholar 

  24. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, New York (2013)

    MATH  Google Scholar 

  25. Grant M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.0 beta. (2013). http://cvxr.com/cvx. Accessed Dec 2017

  26. Grant M., Boyd, S.: Graph Implementations for Nonsmooth Convex Programs, Recent Advances in Learning and Control (a tribute to M. Vidyasagar), V. Blondel, S. Boyd, and H. Kimura, (eds.), 95–110, Lecture Notes in Control and Information Sciences, Springer, (2008) http://stanford.edu/~boyd/graph_dcp.html

  27. Dattorro, J.: Convex Optimization and Euclidean Distance Geometry. \({{\cal{M}}}\epsilon \beta oo\), Palo Alto (2005)

  28. Uyanık, K., Turgut, S.: A new sure-success generalization of Grover iteration and its application to weight decision problem of Boolean functions. Quantum Inf Process. 12(11), 3395–3409 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  29. Brassard, G., Høyer, P., Mosca M., Tapp. A.: Quantum amplitude amplification and estimation. In: Lomonaco, S.J. Jr. (ed.) Quantum Computation and Quantum Information: A Millennium Volume, of AMS Contemporary Mathematics Series, vol. 305, pp. 53–74 (2002). arXiv:quant-ph/0005055

  30. Høyer, P.: Arbitrary phases in quantum amplitude amplification. Phys. Rev. A 62, 052304 (2000)

    Article  ADS  Google Scholar 

  31. Long, G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64, 022307 (2001)

    Article  ADS  Google Scholar 

  32. Nielsen, M.A., Chuang, I.L.: Quantum Comput. Quantum Inf. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  33. Brassard G., Høyer P., Tapp A.: Quantum counting. In: Proceedings of the 25th International Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science, vol. 1443, pp. 820–831 (1998)

    Chapter  Google Scholar 

  34. Choi, B.S., Braunstein, S.L.: Quantum algorithm for the asymmetric weight decision problem and its generalization to multiple weights. Quantum Inf. Process. 10(2), 177–188 (2011)

    Article  MathSciNet  Google Scholar 

  35. Nisan, N., Wigderson, A.: On rank vs. communication complexity. Combinatorica 15(4), 557–565 (1995)

    Article  MathSciNet  Google Scholar 

  36. Ambainis, A.: Polynomial degree vs. quantum query complexity. J. Comput. Syst. Sci. 72(2), 220–238 (2006)

    Article  MathSciNet  Google Scholar 

  37. Høyer, P., Lee, T., Spalek, R.: Negative weights makeadversaries stronger. In: Proceedings of 39th ACM STOC, pp. 526–535(2007)

  38. Laplante, S., Lee, T., Szegedy, M.: The quantum adversary method and classical formula size lower bounds. Comput. Complex. 15(2), 163–196 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) - 2218 Fellowship for Postdoctoral Researchers. We would like to thank Özgür Çakır for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kıvanç Uyanık.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uyanık, K. Evaluation of exact quantum query complexities by semidefinite programming. Quantum Inf Process 18, 177 (2019). https://doi.org/10.1007/s11128-019-2297-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2297-3

Keywords

Navigation