Skip to main content
Log in

Quantum path computing: computing architecture with propagation paths in multiple plane diffraction of classical sources of fermion and boson particles

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum computing (QC) architectures utilizing classical or coherent resources with Gaussian transformations are classically simulable as an indicator of the lack of QC power. Simple optical setups utilizing wave-particle duality and interferometers achieve QC speed-up with the cost of exponential complexity of resources in time, space or energy. However, linear optical networks composed of single-photon inputs and photon number measurements such as boson sampling achieve solving problems which are not efficiently solvable by classical computers while emphasizing the power of linear optics. In this article, quantum path computing (QPC) setup is introduced as the simplest optical QC satisfying five fundamental properties all-in-one: exploiting only the coherent sources being either fermion or boson, i.e., Gaussian wave packet of standard laser, simple setup of multiple plane diffraction (MPD) with multiple slits by creating distinct propagation paths, standard intensity measurement on the detector, energy-efficient design and practical problem solving capability. MPD is unique with non-Gaussian transformations by realizing an exponentially increasing number of highly interfering propagation paths while making classical simulation significantly hard. It does not require single-photon resources or number resolving detection mechanisms making the experimental implementation of QC significantly low complexity. QPC setup is utilized for the solutions of specific instances of two practical and hard number theoretical problems: partial sum of Riemann theta function and period finding to solve Diophantine approximation. Quantumness of MPD with negative volume of Wigner function is numerically analyzed, and open issues for the best utilization of QPC are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Feynman, R.P., Hibbs, A.R., Styer, D.F.: Quantum Mechanics and Path Integrals, emended edn. Dover Publications, New York (2010)

    MATH  Google Scholar 

  2. Puentes, G., La Mela, C., Ledesma, S., Iemmi, C., Paz, J.P., Saraceno, M.: Optical simulation of quantum algorithms using programmable liquid-crystal displays. Phys. Rev. A 69, 042319 (2004)

    Article  ADS  Google Scholar 

  3. Vedral, V.: The elusive source of quantum speedup. Found. Phys. 40, 1141 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Černý, V.: Quantum computers and intractable (NP-complete) computing problems. Phys. Rev. A 48, 116 (1993)

    Article  ADS  Google Scholar 

  5. Haist, T., Osten, W.: An optical solution for the traveling salesman problem. Opt. Express 15, 10473 (2007)

    Article  ADS  Google Scholar 

  6. Rangelov, A.A.: Factorizing numbers with classical interference: several implementations in optics. J. Phys. B At. Mol. Opt. Phys. 42, 021002 (2009)

    Article  ADS  Google Scholar 

  7. Aaronson, S., Arkhipov, A.: The computational complexity of linear optics. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, p. 333 (2011)

  8. Flamini, F., Spagnolo, N., Sciarrino, F.: Photonic quantum information processing: a review. Rep. Prog. Phys. 82(1), 016001 (2018)

    Article  ADS  Google Scholar 

  9. Wang, H., Li, W., Jiang, X., He, Y.M., Li, Y.H., Ding, X., Chen, M.C., Qin, J., Peng, C.Z., Schneider, C., Kamp, M.: Toward scalable boson sampling with photon loss. Phys. Rev. Lett. 120(23), 230502 (2018)

    Article  ADS  Google Scholar 

  10. Gulbahar, B.: Quantum entanglement and interference in time with multi-plane diffraction and violation of Leggett–Garg inequality without signaling. arXiv:1808.06477 (2018)

  11. Feynman, R.P.: Quantum mechanical computers. Found. Phys. 16(6), 507 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  12. Bausch, J., Crosson, E.: Analysis and limitations of modified circuit-to-Hamiltonian constructions. arXiv:1609.08571 (2016)

  13. Tempel, D.G., Aspuru-Guzik, A.: The Kitaev–Feynman clock for open quantum systems. New J. Phys. 16(11), 113066 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  14. Kitaev, A.Y., Shen, A., Vyalyi, M.N., Vyalyi, M.N.: Classical and Quantum Computation, vol. 47. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  15. Aharonov, D., Van Dam, W., Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adiabatic quantum computation is equivalent to standard quantum computation. SIAM Rev. 50(4), 755 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. daPaz, I.G., Vieira, C.H.S., Ducharme, R., Cabral, L.A., Alexander, H., Sampaio, M.D.R.: Gouy phase in nonclassical paths in a triple-slit interference experiment. Phys. Rev. A 9, 033621 (2016)

    Article  ADS  Google Scholar 

  17. Sawant, R., Samuel, J., Sinha, A., Sinha, S., Sinha, U.: Nonclassical paths in quantum interference experiments. Phys. Rev. Lett. 113, 120406 (2014)

    Article  ADS  Google Scholar 

  18. Caha, L., Landau, Z., Nagaj, D.: Clocks in Feynman’s computer and Kitaev’s local Hamiltonian: bias, gaps, idling, and pulse tuning. Phys. Rev. A 97(6), 062306 (2018)

    Article  ADS  Google Scholar 

  19. Griffiths, R.B.: Consistent Quantum Theory. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  20. Griffiths, R.B.: Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys. 36(1–2), 219 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Griffiths, R.B.: Consistent interpretation of quantum mechanics using quantum trajectories. Phys. Rev. Lett. 70(15), 2201 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Cotler, J., Wilczek, F.: Bell tests for histories. arXiv:1503.06458 (2015)

  23. Cotler, J., Wilczek, F.: Entangled histories. Phys. Scr. T168, 014004 (2016)

    Article  ADS  Google Scholar 

  24. Kocia, L., Huang, Y., Love, P.: Semiclassical formulation of the Gottesman–Knill theorem and universal quantum computation. Phys. Rev. A 96, 032331 (2017)

    Article  ADS  Google Scholar 

  25. Tannor, D.J.: Introduction to Quantum Mechanics: A Time-dependent Perspective. University Science Books, Sausalito (2007)

    Google Scholar 

  26. Koh, D.E., Penney, M.D., Spekkens, R.W.: Computing quopit Clifford circuit amplitudes by the sum-over-paths technique. arXiv:1702.03316 (2017)

  27. Yuan, X., Zhou, H., Gu, M., Ma, X.: Unification of nonclassicality measures in interferometry. Phys. Rev. A 97(1), 012331 (2018)

    Article  ADS  Google Scholar 

  28. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409(6816), 46 (2001)

    Article  ADS  Google Scholar 

  29. Bartlett, S.D., Sanders, B.C.: Requirement for quantum computation. J. Mod. Opt. 50(15–17), 2331 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  30. Sasaki, M., Suzuki, S.: Multimode theory of measurement-induced non-Gaussian operation on wideband squeezed light: analytical formula. Phys. Rev. A 73(4), 043807 (2006)

    Article  ADS  Google Scholar 

  31. Bartlett, S.D., Sanders, B.C.: Efficient classical simulation of optical quantum information circuits. Phys. Rev. Lett. 89(20), 207903 (2002)

    Article  ADS  Google Scholar 

  32. Lund, A.P., Laing, A., Rahimi-Keshari, S., Rudolph, T., OBrien, J.L., Ralph, T.C.: Boson sampling from a Gaussian state. Phys. Rev. Lett. 113(10), 100502 (2014)

    Article  ADS  Google Scholar 

  33. Hamilton, C.S., Kruse, R., Sansoni, L., Barkhofen, S., Silberhorn, C., Jex, I.: Gaussian boson sampling. Phys. Rev. Lett. 119(17), 170501 (2017)

    Article  ADS  Google Scholar 

  34. Rhode, P.P., Motes, K.R., Dowling, J.P.: Sampling generalized cat states with linear optics is probably hard. arXiv:1310.0297 (2013)

  35. Kruse, R., Hamilton, C.S., Sansoni, L., Barkhofen, S., Silberhorn, C., Jex, I.: A detailed study of Gaussian boson sampling. arXiv:1801.07488 (2018)

  36. Arkhipov, I.I., Barasiński, A., Svozilík, J.: Negativity volume of the generalized Wigner function as an entanglement witness for hybrid bipartite states. Sci. Rep. 8(1), 16955 (2018)

    Article  ADS  Google Scholar 

  37. Siyouri, F., El Baz, M., Hassouni, Y.: The negativity of Wigner function as a measure of quantum correlations. Quantum Inf. Process. 15(10), 4237 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Dahl, J.P., Mack, H., Wolf, A., Schleich, W.P.: Entanglement versus negative domains of Wigner functions. Phys. Rev. A 74(4), 042323 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  39. Veitch, V., Ferrie, C., Gross, D., Emerson, J.: Negative quasi-probability as a resource for quantum computation. New J. Phys. 14(11), 113011 (2012)

    Article  ADS  Google Scholar 

  40. Albarelli, F., Genoni, M.G., Paris, M.G., Ferraro, A.: Resource theory of quantum non-Gaussianity and Wigner negativity. arXiv:1804.05763 (2018)

  41. Raussendorf, R., Browne, D.E., Delfosse, N., Okay, C., Bermejo-Vega, J.: Contextuality and Wigner-function negativity in qubit quantum computation. Phys. Rev. A 95(5), 052334 (2017)

    Article  ADS  Google Scholar 

  42. Veitch, V., Wiebe, N., Ferrie, C., Emerson, J.: Efficient simulation scheme for a class of quantum optics experiments with non-negative Wigner representation. New J. Phys. 15(1), 013037 (2013)

    Article  ADS  Google Scholar 

  43. Kenfack, A., Życzkowski, K.: Negativity of the Wigner function as an indicator of non-classicality. J. Opt. B Quantum Semiclass. Opt. 6(10), 396 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  44. Kowalewska-Kudłaszyk, A., Kalaga, J.K., Leoński, W.: Wigner-function nonclassicality as indicator of quantum chaos. Phys. Rev. E 78(6), 066219 (2008)

    Article  ADS  Google Scholar 

  45. Siyouri, F.Z.: Markovian and non-Markovian dynamics of non-classical correlations and Wigner function for GHZ-type coherent states. Int. J. Theor. Phys. 58(1), 103 (2019)

    Article  MATH  Google Scholar 

  46. Quijandría, F., Strandberg, I., Johansson, G.: Steady-state generation of Wigner-negative states in one-dimensional resonance fluorescence. Phys. Rev. Lett. 121(26), 263603 (2018)

    Article  ADS  Google Scholar 

  47. Bennett, J.S., Bowen, W.P.: Rapid mechanical squeezing with pulsed optomechanics. New J. Phys. 20(11), 113016 (2018)

    Article  ADS  Google Scholar 

  48. Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102(18), 180501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  49. Sansoni, L., Sciarrino, F., Vallone, G., Mataloni, P., Crespi, A., Ramponi, R., Osellame, R.: Two-particle bosonic–fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108(1), 010502 (2012)

    Article  ADS  Google Scholar 

  50. Singh, S., Chandrashekar, C.M.: Interference and correlated coherence in disordered and localized quantum walk. arXiv:1711.06217v2 (2018)

  51. Jeong, H., Paternostro, M., Kim, M.S.: Simulation of quantum random walks using the interference of a classical field. Phys. Rev. A 69, 012310 (2004)

    Article  ADS  Google Scholar 

  52. Goyal, S.K., Roux, F.S., Forbes, A., Konrad, T.: Implementation of multidimensional quantum walks using linear optics and classical light. Phys. Rev. A 92(4), 040302 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  53. Tang, H., Lin, X.F., Feng, Z., Chen, J.Y., Gao, J., Sun, K., Wang, C.Y., Lai, P.C., Xu, X.Y., Wang, Y., Qiao, L.F.: Experimental two-dimensional quantum walk on a photonic chip. Sci. Adv. 4(5), eaat3174 (2018)

    Article  ADS  Google Scholar 

  54. Schreiber, A., Gábris, A., Rohde, P.P., Laiho, K., Štefaňák, M., Potoček, V., Hamilton, C., Jex, I., Silberhorn, C.: A 2D quantum walk simulation of two-particle dynamics. Science 1218448, 55–58 (2012)

    Article  ADS  Google Scholar 

  55. Knight, P.L., Roldán, E., Sipe, J.E.: Quantum walk on the line as an interference phenomenon. Phys. Rev. A 68(2), 020301 (2003)

    Article  ADS  Google Scholar 

  56. Jeong, H., Paternostro, M., Kim, M.S.: Simulation of quantum random walks using the interference of a classical field. Phys. Rev. A 69(1), 012310 (2004)

    Article  ADS  Google Scholar 

  57. Qi, F., et al.: Experimentally simulating quantum walks with self-collimated light. Sci. Rep. 6, 28610 (2016)

    Article  ADS  Google Scholar 

  58. Perets, H.B., Lahini, Y., Pozzi, F., Sorel, M., Morandotti, R., Silberberg, Y.: Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100(17), 170506 (2008)

    Article  ADS  Google Scholar 

  59. Lovett, N.B., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 81(4), 042330 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  60. Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11(5), 1015 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  61. Ferrie, C.: Quasi-probability representations of quantum theory with applications to quantum information science. Rep. Prog. Phys. 74(11), 116001 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  62. Deconinck, B., Heil, M., Bobenko, A., Van Hoeij, M., Schmies, M.: Computing Riemann theta functions. Math. Comput. 73(247), 1417 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Riemann, G.F.B.: Theorie der Abel’schen functionen. Journal für reine und angewandte Mathematik 54, 101 (1857)

    MathSciNet  Google Scholar 

  64. Mumford, D.: Tata Lectures on Theta. I. Birkhäuser Boston Inc., Boston (1983)

    Book  MATH  Google Scholar 

  65. Frauendiener, J., Jaber, C., Klein, C.: Efficient computation of multidimensional theta functions. arXiv:1701.07486 (2017)

  66. Osborne, A.R.: Nonlinear Ocean Wave and the Inverse Scattering Transform. International Geophysics Series, vol. 97. Academic Press, Oxford (2002)

    Google Scholar 

  67. Wahls, S., Poor, H.V.: Fast numerical nonlinear Fourier transforms. IEEE Trans. Inf. Theory 61(12), 6957 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  68. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2010)

    Book  MATH  Google Scholar 

  69. Dowker, H.F., Halliwell, J.J.: Quantum mechanics of history: the decoherence functional in quantum mechanics. Phys. Rev. D 46, 1580 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  70. Ozaktas, H., Zalevsky, Z., Kutay, M.A.: The Fractional Fourier Transform with Applications in Optics and Signal Processing. Wiley, Chichester (2001)

    Google Scholar 

  71. Jacobi, C.G.J.: Fundamenta Nova Theoriae Functionum Ellipticarum. Königsberg, Omaha (1829)

    Google Scholar 

  72. Lagarias, J.C.: The computational complexity of simultaneous diophantine approximation problems. In: IEEE 23rd Annual Symposium on Foundations of Computer Science, p. 32 (1982)

  73. Zieliński, T.P., Duda, K.: Frequency and damping estimation methods-an overview. Metrol. Meas. Syst. 18, 505 (2011)

    Article  Google Scholar 

  74. DiVincenzo, D., Terhal, B.: Decoherence: the obstacle to quantum computation. Phys. World 11, 53 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank the referees for very helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burhan Gulbahar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Iterative formulation of path integrals

Throughout the appendices, various formulations are listed in Table 5. In the following, all the calculations are performed for the specific nth path assuming the corresponding slit width parameters are given by the values of \(\beta _j\) on jth plane for \(j \in [1, N-1]\). Therefore, all the following parameters depend on the path index n without explicitly showing, e.g., \(A_{j}\) and \(B_{j}\) should be replaced with \(A_{j,{n}}\) and \(B_{j,{n}}\), respectively, for the specific nth path. The same is valid for the remaining parameters except the local parameters \(C_{j,n}\), \(D_{j,n}\) and \(\chi _{j,n}\). They depend directly on the slit positions and accordingly on n such that they are denoted by including the path index n for jth plane as \(C_{j,n}\), \(D_{j,n}\) and \(\chi _{j,n}\). Similarly, \(\overrightarrow{c}_{N-1}\) and \(\overrightarrow{d}_{N-1}\) should be replaced by \(\overrightarrow{c}_{N-1, n}\) and \(\overrightarrow{d}_{N-1, n}\), respectively. The final resulting matrix \({\mathbf {H}}\) utilized in (13) should be replaced with \({\mathbf {H}}_{N-1, n}\) as in (14). Only the parameters \(A_0\), \(B_0\) and \(\chi _0\) are path independent. Therefore, the corresponding numerical results of the expressions for varying slit widths on each path are obtained by changing \(\beta _j\) on jth plane for the corresponding path. After integration in (12), the following is obtained:

$$\begin{aligned} \begin{aligned} \varPsi _{n,j}(x) \, = \,&\chi _{0} \, \left( \prod _{k=1}^{j-1} \chi _{k,n} \right) \, e^{(A_{j-1} \,+ \, \imath \, B_{j-1})\, x^2 \,+ \, (C_{j-1,n} \,+ \, \imath \, D_{j-1,n})\, x} \end{aligned} \end{aligned}$$
(36)

where \(j \in [1, N]\), x corresponds to the position in x-axis on jth plane and iterative variables \(\chi _{j,n}\), \(A_{j}\), \(B_{j}\), \(C_{j,n}\) and \(D_{j,n}\) are defined in Table 5. The first integration is obtained with \(\varPsi _0(x)\) by free propagation until the first slit plane resulting in \(A_0\), \( B_0 \), \(\chi _0\) while \(C_0= D_0 = 0\). The second LCT results in \( A_1 \), \(B_1 \), \(C_{1,n} \), \(D_{1,n}\), \(\chi _{1,n} \), where \(p_{1, j} \), \(\varsigma _j \), \(\xi _{j} \), \(\varrho _j \), \(\zeta _j \), \(\zeta _{j,c} \) and \(\zeta _{j,d}\) are defined for \(j \in [1, N-1]\). Then, the iterations for \(A_j\), \(B_j\), \(C_{j,n}\), \(D_{j,n}\), \(\chi _{j,n}\), \(p_{2,j}\), \(p_{3,j}\), \(p_{4,j}\), \(p_{5,j}\) and \(\chi _{T,j} { \, \equiv \, \chi _{0} \prod _{k=1}^{j} \chi _{k,n}}\) are obtained for \(j \in [2, N-1]\). An iterative relation is obtained as follows:

$$\begin{aligned} \left[ \begin{array}{c} C_{j,n} \\ D_{j,n} \end{array} \right] = \left[ \begin{array}{c} \zeta _{j,c} \\ \zeta _{j,d} \end{array} \right] X_{j,s_{n,j}} + \left[ \begin{array}{cc} p_{4,j}&{}\quad p_{5,j} \\ -\,p_{5,j}&{}\quad p_{4,j} \end{array} \right] \left[ \begin{array}{c} C_{j-1,n} \\ D_{j-1,n} \end{array} \right] \end{aligned}$$
(37)

Performing iterations results in \(C_{N-1,n} = \overrightarrow{c}_{N-1}^\mathrm{T} \overrightarrow{x}_{N-1,n}\) and \(D_{N-1,n} = \overrightarrow{d}_{N-1}^\mathrm{T} \overrightarrow{x}_{N-1,n}\), where jth element of the vector \(\overrightarrow{x}_{N-1,n}\) of the length \(N-1\) is defined as \(X_{j,s_{n,j}}\), and the row vectors \(\overrightarrow{c}_{j}^\mathrm{T}\) and \(\overrightarrow{d}_{j}^\mathrm{T}\) are defined as follows:

$$\begin{aligned} \left[ \begin{array}{c} \overrightarrow{c}_{j}^\mathrm{T} \\ \overrightarrow{d}_{j}^\mathrm{T} \end{array} \right] = \left[ \begin{array}{cccc} \overrightarrow{v}_{0,j}&\overrightarrow{v}_{1,j}&\ldots&\overrightarrow{v}_{j-1,j} \end{array} \right] \end{aligned}$$
(38)

where \(\overrightarrow{v}_{k, j}\) for \(k \in [0, j-1]\), utilized to obtain \(C_{j,n} = \overrightarrow{c}_{j}^\mathrm{T} \overrightarrow{x}_{j, n}\) and \(D_{j, n} = \overrightarrow{d}_{j}^\mathrm{T} \overrightarrow{x}_{j, n}\), is given as follows:

$$\begin{aligned} \overrightarrow{v}_{k, j} \, \equiv \, \left( \prod _{i=1}^{j-1-k} \left[ \begin{array}{cc} p_{4,j+1-i} &{} p_{5,j+1-i} \\ -p_{5,j+1-i} &{} p_{4,j+1-i} \end{array} \right] \right) \left[ \begin{array}{c} \zeta _{k+1,c} \\ \zeta _{k+1,d} \end{array} \right] \end{aligned}$$
(39)

and the matrix multiplication symbol \(\prod _{i=1}^{k} {\mathbf {U}}_i\) denotes \({\mathbf {U}}_1 \, {\mathbf {U}}_2 \ldots {\mathbf {U}}_k\) for any matrix \({\mathbf {U}}_i\) for \(i \in [1,k]\). The following is obtained after inserting the resulting expressions of \(C_{N-1,n}\) and \(D_{N-1,n}\) into \(\chi _{T,{N-1}}\):

$$\begin{aligned} \chi _{T,N-1}&\equiv \, \chi _0 \left( \prod _{j=1}^{N-1} \sqrt{\xi _{j}} \right) \, e^{ \overrightarrow{p}_1^\mathrm{T} \big ( \overrightarrow{x}_{N-1, n} \odot \overrightarrow{x}_{N-1,n} \big ) } \times \, e^{ \overrightarrow{p }_2^\mathrm{T}\big ( \big ({\mathbf {G}} \, \overrightarrow{x}_{N-1, n} \big ) \odot \big ({\mathbf {G}} \, \overrightarrow{x}_{N-1, n} \big ) \big ) }\nonumber \\&\quad \times \, e^{\overrightarrow{p}_3^\mathrm{T} \big ( \big ({\mathbf {G}} \, \overrightarrow{x}_{N-1, n} \big ) \odot \big ( {\mathbf {E}}_{1}\, \overrightarrow{x}_{N-1, n} \big ) \big ) } \end{aligned}$$
(40)

where \(\odot \) denotes the point-wise product, \({\mathbf {G}}\) and \(\mathbf {E_1}\) are defined as follows:

$$\begin{aligned} {\mathbf {G}} \equiv \left[ \begin{array}{cc} {\mathbf {E}}_{2} {{\mathbf {V}}_{L}} &{}\quad {\mathbf {0_{N-2}}} \\ {\mathbf {0^\mathrm{T}_{N-2}}} &{} \quad 0 \end{array} \right] ; \, \, {\mathbf {E_1}} \equiv \left[ \begin{array}{cc} {\mathbf {0_{N-2}}} &{}\quad {\mathbf {I_{N-2}}} \\ 0 &{}\quad {\mathbf {0^\mathrm{T}_{N-2}}} \end{array} \right] \end{aligned}$$
(41)

while \({\mathbf {E}}_{2}\) has jth row as \(\left[ \begin{array}{cccc} {\mathbf {0^\mathrm{T}_{2(j-1)}}}&1&\imath&{\mathbf {0^\mathrm{T}_{2(N-2-j)}}} \end{array} \right] \), \({\mathbf {V}}_{L}\) is the matrix whose jth column is given by \(\left[ \begin{array}{cccc} {\mathbf {0^\mathrm{T}_{2(j-1)}}}&\overrightarrow{v}_{j-1,j}^\mathrm{T}&\ldots&\overrightarrow{v}_{j-1,N-2}^\mathrm{T} \end{array} \right] ^\mathrm{T}\), \({\mathbf {0_{k}}}\) is the column vector of zeros of length k, the sizes of \({{\mathbf {E}}_{2}}\) and \({{\mathbf {V}}_{L}}\) are \( (N - 2) \times (2 N - 4)\) and \((2 N - 4) \times (N - 2)\), respectively, and \({\mathbf {G}}\) and \({\mathbf {E}}_1\) are \((N - 1) \times (N - 1)\). Then, the resulting wave function \(\varPsi _{n,N}(x) \) is given by the following:

$$\begin{aligned} \begin{aligned} \varPsi _{n,N}(x)&= \,{\varUpsilon _{N}}\, e^{\sum _{k = 1}^3 \overrightarrow{p}_k^\mathrm{T} \bigg ( \big ({\mathbf {M}}_{1,k} \, \overrightarrow{x}_{N-1, n} \big ) \odot \big ({\mathbf {M}}_{2,k} \, \overrightarrow{x}_{N-1, n} \big ) \bigg ) } \\&\quad \times \, e^{(A_{N-1} \, + \, \imath \, B_{N-1}) \, x^2 \, + \, (\overrightarrow{c}_{N-1}^\mathrm{T} \, + \, \imath \, \overrightarrow{d}_{N-1}^\mathrm{T}) \, \overrightarrow{x}_{N-1, n} \, x } \, \, \, \, \, \, \, \end{aligned} \end{aligned}$$
(42)

where \(\varUpsilon _{j} = \chi _0 \, \big ( \prod _{i=1}^{j-1} \sqrt{\xi _{i}} \big )\), \({\mathbf {M}}_{1,1} = {\mathbf {M}}_{2,1} = \mathbf {I_{N-1}}\), \({\mathbf {M}}_{1,2} = {\mathbf {M}}_{2,2} = {\mathbf {G}}\), \({\mathbf {M}}_{1,3} = {\mathbf {G}}\), \({\mathbf {M}}_{2,3} = {\mathbf {E}}_{1}\), \({\mathbf {I_{k}}}\) is identity matrix of size k, complex-valued column vectors \(\overrightarrow{p}_{k}\) for \(k \in [1, 3]\), real-valued iterative variables \(A_j\) and \(B_j\), and complex-valued iterative variable \(\xi _j\) are defined in Table 5, and \(\overrightarrow{x}_{{N-1}, n} \equiv [X_{1,s_{n,1}} \, X_{2,s_{n,2}} \, \ldots \, X_{N-1,s_{n, N-1}} ]^\mathrm{T}\). Intensity distribution on screen is \(I_N(x) \!=\! \big \vert \varPsi _{N}(x) \big \vert ^2 \) which is equal to \(\big \vert \sum _{n=0}^{N_p-1} \, e^{ (A_{N-1} \, {+\, \imath \, B_{N-1} })\, x^2 } \) \( {\varUpsilon _N} \, e^{r \lbrace \overrightarrow{x}_{n}\rbrace } \,e^{\overrightarrow{c}^\mathrm{T} \overrightarrow{x}_{n} \, x} \,e^{\imath \, \overrightarrow{d}^\mathrm{T} \overrightarrow{x}_{n} \, x} \big \vert ^2\) where \(I_j(x) = \big \vert \varPsi _{j}(x) \big \vert ^2\) denotes the intensity or the probability of detection on jth plane for \(j \in [0, N]\), \(I_0(x) \equiv \vert \varPsi _{0}(x)\vert ^2\), the subscript \(N - 1\) is dropped from the vectors to simplify the notation, e.g., \( r\lbrace \overrightarrow{x}_{n} \rbrace \, \equiv \, \sum _{k = 1}^3 \overrightarrow{p}_k^\mathrm{T} \big ( ({\mathbf {M}}_{1,k} \, \overrightarrow{x}_{n} ) \odot ({\mathbf {M}}_{2,k} \,\overrightarrow{x}_{n} ) \big )\), \(\overrightarrow{x}_{n} \equiv \overrightarrow{x}_{N-1, n}\), \(\overrightarrow{c} \equiv \overrightarrow{c}_{N-1}\) and \(\overrightarrow{d} \equiv \overrightarrow{d}_{N-1}\). It can be easily shown that \(r \lbrace \overrightarrow{x}_{n}\rbrace \) is equal to \(\overrightarrow{x}_{n}^\mathrm{T} \, {\mathbf {H}} \, \overrightarrow{x}_{n} \) where the proof is in “Appendix B” and the matrix \({\mathbf {H}}\) is given as \({\mathbf {H}} = \sum _{k=1}^{3} {\mathbf {M}}_{2,k}^\mathrm{T} \, \hbox {diag}\lbrace \overrightarrow{p}_k \rbrace \, {\mathbf {M}}_{1,k}\), where \(\hbox {diag}\lbrace \overrightarrow{y} \rbrace \) is the operator creating a diagonal matrix with the elements composed of the vector \(\overrightarrow{y}\).

Generation of the H-matrix

\(\sum _{k = 1}^3 \overrightarrow{p}_k^\mathrm{T} \big ( ({\mathbf {M}}_{1,k} \overrightarrow{x}_{n} ) \odot ({\mathbf {M}}_{2,k} \overrightarrow{x}_{n} ) \big )\) is transformed to four different equalities. Firstly, it equals to \( \overset{1}{=} \sum _{k = 1}^3 \) \( \mathbf {Tr} \big \lbrace \hbox {diag}\lbrace \overrightarrow{p}_k \rbrace \) \( {\mathbf {M}}_{1,k} \) \( \overrightarrow{x}_{n} \overrightarrow{x}_{n}^\mathrm{T} \) \( {\mathbf {M}}_{2,k}^\mathrm{T} \big \rbrace \), where the equality is obtained by transforming the inner and point-wise product combination into a trace. Then, \(\overset{2}{=} \) \( \sum _{k = 1}^3 \mathbf {Tr} \) \(\big \lbrace {\mathbf {M}}_{2,k}^\mathrm{T} \, \hbox {diag}\lbrace \overrightarrow{p}_k \rbrace \, {\mathbf {M}}_{1,k} \, \overrightarrow{x}_{n} \, \overrightarrow{x}_{n}^\mathrm{T} \big \rbrace \) and \( \overset{3}{=} \) \( \mathbf {Tr} \) \(\big \lbrace \) \( \big ( \sum _{k = 1}^3 {\mathbf {M}}_{2,k}^\mathrm{T} \) \( \hbox {diag}\lbrace \overrightarrow{p}_k \rbrace \) \( {\mathbf {M}}_{1,k} \big ) \) \( \overrightarrow{x}_{n} \, \overrightarrow{x}_{n}^\mathrm{T} \big \rbrace \) are obtained due to the permutation and the addition properties of the trace, respectively. Finally, \( \overset{4}{=} \) \( \mathbf {Tr} \big \lbrace \) \( \overrightarrow{x}_{n}^\mathrm{T} \) \(\big ( \sum _{k = 1}^3 {\mathbf {M}}_{2,k}^\mathrm{T} \, \hbox {diag}\lbrace \overrightarrow{p}_k \rbrace \, {\mathbf {M}}_{1,k} \big ) \) \( \overrightarrow{x}_{n} \, \big \rbrace \) is obtained with the permutation property. Then, the quadratic form is obtained.

Proof of Theorem 1

The intensity at \( {\widetilde{k}} - k\) for \(k \in [1, {\widetilde{k}}]\) is given as follows due to the definition in (21) and the first condition in Theorem 1:

$$\begin{aligned} {\widetilde{I}}[{\widetilde{k}} - k] \overset{1}{ = } \left| \sum _{n = 0}^{N_p - 1} g_3[n] \, (g_1[n])^{{\widetilde{k}} - k} \, e^{ - \imath \, 2 \, \pi \, {\widetilde{G}}_2[n] \, k / {\widetilde{k}} } \right| ^2 = \vert H[{ {\widetilde{k}} \, - \, }k,{\widetilde{G}}_2] \vert ^2 \end{aligned}$$
(43)

Then, \({\widetilde{I}}[{\widetilde{k}} - k] \) \(\overset{2}{ < } \) \( \left| \sum _{n = 0}^{N_p - 1} g_3[n] \, (g_1[n])^{{\widetilde{k}} - k} \right| ^2 \, \overset{3}{ < } \) \( {\widetilde{I}}[{\widetilde{k}}] = \left| \sum _{n = 0}^{N_p - 1} g_3[n] \, (g_1[n])^{{\widetilde{k}}} \right| ^2 \) are obtained with the second condition in Theorem 1.

Proof of Theorem 2

The conditional probability for the sample at \(k_p\) is given by the following:

$$\begin{aligned} p(I^{*}_n[k_p] \big \vert {\widetilde{k}}) = (2 \, \pi \, {\widetilde{\sigma }}^2_p)^{-1/2} e^{- (I^{*}_n[k_p] - I^{*}[k_p])^2 / (2 \, {\widetilde{\sigma }}^2_p)} \end{aligned}$$
(44)

where \({\widetilde{\sigma }}_p \equiv \sigma ^{*}[k_p]\). Then, denoting the noisy and noise-free intensity vectors by \(\overrightarrow{I}^{*}_n = [I^{*}_n[k_0] \ldots I^{*}_n[k_{M-1}]]^\mathrm{T}\) and \(\overrightarrow{I}^{*} = [I^{*}[k_0] \ldots I^{*}[k_{M-1}]]^\mathrm{T}\), respectively, the log likelihood function is given as \( \hbox {log}\big ( p(\overrightarrow{I }^{*}_n \big \vert {\widetilde{k}}) \big ) = - \frac{M}{2} \, \hbox {log}(2 \, \pi ) \, - \, \frac{1}{2} \sum _{p = 0}^{M-1} \hbox {log}({\widetilde{\sigma }}_p^2) \, - \, (\overrightarrow{I}^{*}_{n, {\widetilde{\sigma }}} - \overrightarrow{I}^{*}_{{\widetilde{\sigma }}})^\mathrm{T} \cdot (\overrightarrow{I}^{*}_{n, {\widetilde{\sigma }}} - \overrightarrow{I}^{*}_{{\widetilde{\sigma }}}) \), where \( I^{*}_{n, {\widetilde{\sigma }}}[k_p] \equiv I^{*}_n[k_p] / ({\widetilde{\sigma }}_p \, \sqrt{2})\) and \(I^{*}_{{\widetilde{\sigma }}}[k_p] \equiv I^{*}[k_p] / ( {\widetilde{\sigma }}_p\, \sqrt{2})\). Fisher information matrix is given as follows:

$$\begin{aligned} I_F[{\widetilde{k}}]\equiv E \bigg \lbrace \bigg (\delta \, \hbox {log}\big ( p(\overrightarrow{I}^{*}_n \big \vert {\widetilde{k}}) \big ) \,/\,\delta {\widetilde{k}} \bigg )^2 \bigg \rbrace \,= \,- \,E \lbrace \delta ^2 \hbox {log}\big ( p(\overrightarrow{I}^{*}_n \big \vert {\widetilde{k}}) \big ) \, / \,\delta {\widetilde{k}}^2 \rbrace \end{aligned}$$
(45)

where \(\delta (.) / \delta {\widetilde{k}}\) denotes the partial derivative of (.) with respect to \({\widetilde{k}}\). If the zero mean random variable is assumed at each sample point, then \(I_F[{\widetilde{k}}]\) is obtained after simple calculations as \(I_F[{\widetilde{k}}] = \sum _{p=0}^{M-1} {\widetilde{\sigma }}_p^{-2}\) \( \big ( \delta I^{*}[k_p] / \delta \, {\widetilde{k}}\big )^2\) which depends on the square of the derivative of the intensity on the period \({\widetilde{k}}\). Then, assuming an estimation method denoted by \({\widehat{k}}\) has a bias \(b({\widehat{k}}) \equiv E \lbrace {\widehat{k}} \rbrace - {\widetilde{k}} \), the Cramer–Rao Bound, i.e., \(\hbox {CR}({\widetilde{k}})\), satisfies \(\hbox {Var}({\widehat{k}}) \, \ge \, \hbox {CR}({\widetilde{k}})\) for the variance of estimation where \( \hbox {CR}({\widetilde{k}})\) is given by the following:

$$\begin{aligned} \hbox {CR}({\widetilde{k}}) \, \equiv \, (1 \, + \, \delta b({\widehat{k}}) / \delta {{\widetilde{k}}})^2 / I_F[{\widetilde{k}}] \, = \, (1 \, + \, \delta b({\widehat{k}}) / \delta {{\widetilde{k}}})^2 \left( \sum _{p=0}^{M-1} {\widetilde{\sigma }}_p^{-2} \big ( \delta I^{*}[k_p] \, / \, \delta \, {\widetilde{k}} \big )^2 \right) ^{-1} \end{aligned}$$
(46)

Furthermore, assuming \({\widetilde{\sigma }}_p^2 \le {\widetilde{\sigma }}_\mathrm{max}^2\), the maximum of the minimum variance bound is given by the following:

$$\begin{aligned} \hbox {CR}({\widetilde{k}}) \le {\widetilde{\sigma }}_\mathrm{max}^2 \, (1 \, + \, \delta b({\widehat{k}}) / \delta {{\widetilde{k}}})^2 \left( \sum _{p=0}^{M-1} \big ( \delta I^{*}[k_p] / \delta \, {\widetilde{k}}\big )^2 \right) ^{-1} \end{aligned}$$
(47)

while with \(\Delta G_2[n, l] \equiv {\widetilde{G}}_2[l]\,-\,{\widetilde{G}}_2[n]\), \(\delta I^{*}[k_p] / \delta \, {\widetilde{k}}\) becomes as follows for \(I^{*}[k_p] \equiv {I}^G[k_p]\):

$$\begin{aligned} \sum _{n = 0}^{N_p - 1} \sum _{l = 0}^{N_p - 1} g_{3,*}[n,l] \, g_{1,*}^{k_p}[n,l] \, g_{4,*}^{k_p^2}[n,l] e^{ -\Delta G_2[n, l] \, \imath \, \, 2 \, \pi \, k_p / {\widetilde{k}} } \big (\Delta G_2[n, l] \, \imath \, 2 \, \pi \, k_p / {\widetilde{k}}^2 \big ) \end{aligned}$$
(48)

and it is represented as follows for the normalized wave function \(I^{*}[k_p] \equiv e^{- 2\, A_{N-1} \, (k_p\,T_\mathrm{s})^2} I[k_p]\):

$$\begin{aligned} \sum _{n = 0}^{N_p - 1} \sum _{l = 0}^{N_p - 1} g_{3,*}[n,l] \, g_{1,*}^{k_p}[n,l] e^{ -\Delta G_2[n, l] \, \imath \, \, 2 \, \pi \, k_p / {\widetilde{k}} } \big (\Delta G_2[n, l] \, \imath \, 2 \, \pi \, k_p / {\widetilde{k}}^2 \big ) \end{aligned}$$
(49)

Path integral with exotic paths

The evolution of the wave function in nth path after the non-classical travels of k slits with \(k \in [1, N_E]\) as shown in Fig. 3 is given as \(\varPsi _{n,j,k}^E(x^E_{j,k}) = \int _{x_j} f^E_{n,k}(x^E_{j,k}, x_{j}) \, \varPsi _{n,j,0}^E(x^E_{j,0}) \, \mathrm {d}x_j\) where \(\varPsi _{n,j,0}^E(x^E_{j,0}) \equiv G_{n,j}(x_{j} - X_{j, s_{n,j}}) \, \varPsi _{n, j}(x_j)\), \(x_{j, 0}^E \equiv x_j\), \(f^E_{n,1}(x^E_{j,1}, x_{j}) \equiv K(x^E_{j,1}, t^E_{j,1}; x_{j}, t_{j}) \) and \(f^E_{n,k}(x^E_{j,k}, x_{j})\) for \( k \ge 2\) is defined as follows:

$$\begin{aligned}&\int _{\overrightarrow{x}^E_{j, k}} \mathrm {d}\overrightarrow{x}^E_{j, k} \, K(x^E_{j,1}, t^E_{j,1}; x_{j}, t_{j}) \prod _{p = 2}^{k} K(x^E_{j,p}, t^E_{j,p}; x^E_{j,p-1}, t^E_{j,p-1}) \nonumber \\&\qquad \times \,G_{n,j}(x^E_{j,p-1} - X_{j, s_{n,j,p-1}}) \end{aligned}$$
(50)

while \(k = 0\) case corresponds to the wave function evolution without any non-classical path, i.e., \(\varPsi _{n,j,0}^E(x^E_{j,0})\), \(t^E_{j,k} \equiv \sum _{p = 1}^{k} t_{p-1,p}^E(j) \, + \, t_j\) is the time after visiting kth slit on jth plane, \(t_j\) corresponds to the time at the beginning of the non-classical movements and \(\overrightarrow{x}^E_{j, k} \equiv [ x_{j, 1}^E \, \, x_{j,2}^E \, \, \ldots \, \, x_{j, k-1}^E ]\). If it is assumed that the nth path performs \(k \ge 1\) consecutive visits to the slits on jth plane while the entrance slit is \(X_{j, s_{n,j}}\) and the wave function at the position \(x_j\) is \(\varPsi _{n, j}(x_j)\), then the wave function on the next plane, i.e., \(\varPsi _{n,j+1}(x_{j+1})\), is calculated as follows:

$$\begin{aligned} \int K(x_{j+1}, t^E_{j,k} + \, t_{j,j+1}; x^E_{j,k}, t^E_{j,k}) \, G_{n,j}(x^E_{j,k} - X_{j, s_{n,j,k}}) \, \varPsi _{n,j,k}^E(x^E_{j,k}) \, \mathrm {d}x^E_{j,k} \end{aligned}$$
(51)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulbahar, B. Quantum path computing: computing architecture with propagation paths in multiple plane diffraction of classical sources of fermion and boson particles. Quantum Inf Process 18, 167 (2019). https://doi.org/10.1007/s11128-019-2286-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2286-6

Keywords

Navigation