Skip to main content
Log in

Multi-party quantum key agreement protocol secure against collusion attacks

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The fairness of a secure multi-party quantum key agreement (MQKA) protocol requires that all involved parties are entirely peer entities and can equally influence the outcome of the protocol to establish a shared key wherein no one can decide the shared key alone. However, it is found that parts of the existing MQKA protocols are sensitive to collusion attacks, i.e., some of the dishonest participants can collaborate to predetermine the final key without being detected. In this paper, a multi-party QKA protocol resisting collusion attacks is proposed. Different from previous QKA protocol resisting \(N-1\) coconspirators or resisting 1 coconspirators, we investigate the general circle-type MQKA protocol which can be secure against t dishonest participants’ cooperation. Here, \(t < N\). We hope the results of the presented paper will be helpful for further research on fair MQKA protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. For the single state, it can be considered as the entangled states where parts of them \(R_{i}\) have already been measured.

  2. For the single state, it can be considered as the entangled states where parts of them have already been measured.

References

  1. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on the Foundations of Computer Science, pp. 124–134 (1994)

  2. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  3. Du, R.G., Sun, Z.W., Wang, B.H., Long, D.Y.: Quantum secret sharing of secure direct communication using one-time pad. Int. J. Theor. Phys. 51, 2727–2736 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sun, Z.W., Du, R.G., Long, D.Y.: Quantum secure direct communication with quantum identification. Int. J. Quantum Inf. 10, 1250008 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Sun, Z.W., Du, R.G., Long, D.Y.: Quantum secure direct communication with two-photon four-qubit cluster state. Int. J. Theor. Phys. 51, 1946–1952 (2012)

    Article  MATH  Google Scholar 

  6. Liu, W.J., Liu, C., Liu, Z.H., Liu, J.F., Geng, H.T.: Same initial states attack in Yang et al’s quantum private comparison protocol and the improvement. Int. J. Theor. Phys. 53(1), 271–276 (2014)

    Article  MATH  Google Scholar 

  7. Liu, W.-J., Liu, C., Chen, H.-W., Liu, Z.-H., Yuan, M.-X., Lu, J.-S.: Improvement on “an efficient protocol for the quantum private comparison of equality with W state”. Int. J. Quantum. Inf. 12(01), 1450001 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, W.J., Liu, C., Chen, H.W., Li, Z.Q.: Cryptanalysis and improvement of quantum private comparison protocol based on Bell entangled states. Commun. Theor. Phys. 62(2), 210–214 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Sun, Z.W., Long, D.Y.: Quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 52, 212–218 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sun, Z.W., Yu, J.P., Wang, P., Xu, L.L., Wu, C.H.: Quantum private comparison with a malicious third party. Quantum Inf. Process. 14(6), 2125–2133 (2015)

    Article  ADS  MATH  Google Scholar 

  11. Sun, Z., Jianping, Y., Wang, P., Lingling, X.: Symmetrically private information retrieval based on blind quantum computing. Phys. Rev. A 91, 052303 (2015)

    Article  ADS  Google Scholar 

  12. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40(18), 1149 (2004)

    Article  Google Scholar 

  13. Tsai, C., Hwang, T.: On quantum key agreement protocol. Technical Report, C-S-I-E, NCKU, Taiwan, R.O.C (2009)

  14. Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on quantum key agreement protocol with maximally entangled states. Int. J. Theor. Phys. 50(6), 1793–1802 (2011)

    Article  MATH  Google Scholar 

  15. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283(6), 1192–1195 (2010)

    Article  ADS  Google Scholar 

  16. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single particle measurements. Quantum Inf. Process. 13(3), 649–663 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dongsu, S., Wenping, M., Lili, W.: Two-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process. 13, 2313 (2014)

    Article  MathSciNet  Google Scholar 

  18. He, Y.F., Ma, W.P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14(9), 3483–3498 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with Bell states and Bell measurements. Quantum Inf. Process. 12(2), 921–932 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Liu, B., Gao, F., Huang, W., Wen, Qy: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12(4), 1797–1805 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Sun, Z., Wang, B., Li, Q., Long, D.: Improvements on multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 3411 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Yin, X.R., Ma, W.P., Liu, W.Y.: Three-party quantum key agreement with two-photon entanglement. Int. J. Theor. Phys. 52, 3915–3921 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yin, X.R., Wen, W.P., Shen, D.S., et al.: Three-party quantum key agreement with Bell states. Acta Phys. Sin. 62(17), 170304 (2013)

    Google Scholar 

  24. Chitra, S., Nasir, A., Anirban, P.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391–2405 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhu, Z.C., Hu, A.Q., Fu, A.M.: Improving the security of protocols of quantum key agreement solely using Bell measurement. Quantum Inf. Process. 14(11), 4245–4254 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Sun, Z., Jianping, Y., Wang, P.: Efficient multiparty quantum key agreement by cluster states. Quantum Inf. Process. 15(1), 373–384 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Sun, Z., Zhang, C., Wang, P., Yu, J., Zhang, Y., Long, D.: Multi-party quantum key agreement by an entanglement six-qubit state. Int. J. Theor. Phys. 55(3), 1920–1929 (2015)

    Article  MATH  Google Scholar 

  28. Sun, Z., Huang, J., Wang, P.: Efficient multiparty quantum key agreement protocol based on commutative encryption. Quantum Inf. Process. 15(5), 2101–2111 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Huang, W., Wen, Q.Y., Liu, B., et al.: Cryptanalysis of a multi-party quantum key agreement protocol with single particles. Quantum Inf. Process. 13(7), 1651–1657 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  30. Liu, B., Di, X., Heng-Yue, J., Run-Zong, L.: Collusive attacks to circle-type multi-party quantum key agreement protocols. Quantum Inf. Process. 15(5), 2113–2124 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5633–5638 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is funded by the National Natural Science Foundation of China (No. 61602316, 61402293), the Science and Technology Innovation Projects of Shenzhen (No. JCYJ20150324141711665 and No. JCYJ20150324141711694), Natural Science Foundation of SZU (No. 201435), and China Postdoctoral Science Foundation (No. 2015M572360).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Sun, Z. & Sun, X. Multi-party quantum key agreement protocol secure against collusion attacks. Quantum Inf Process 16, 170 (2017). https://doi.org/10.1007/s11128-017-1621-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1621-z

Keywords

Navigation