Creating maximally entangled states by gluing

Article

Abstract

We introduce a general method of gluing multi-partite states and show that entanglement swapping is a special class of a wider range of gluing operations. The gluing operation of two m and n qudit states consists of an entangling operation on two given qudits of the two states followed by operations of measurements of the two qudits in the computational basis. Depending on how many qudits (two, one or zero) we measure, we have three classes of gluing operation, resulting respectively in \(m+n-2\), \(m+n-1\), or \(m+n\) qudit states. Entanglement swapping belongs to the first class and has been widely studied, while the other two classes are presented and studied here. In particular, we study how larger GHZ and W states can be constructed when we glue the smaller GHZ and W states by the second method. Finally we prove that when we glue two states by the third method, the k-uniformity of the states is preserved. That is when a k-uniform state of m qudits is glued to a \(k'\)-uniform state of n qudits, the resulting state will be a \(\hbox {min}(k,k')\)-uniform of \(m+n\) qudits.

Keywords

Multi-partite entangled states K-uniform states Qudit Entanglement swapping Local operations Gluing 

References

  1. 1.
    Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Aolita, L., Chaves, R., Cavalcanti, D., Acín, A., Davidovich, L.: Scaling laws for the decay of multiqubit entanglement. Phys. Rev. Lett. 100, 080501 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Barreiro, J.T., Schindler, P., Gühne, O., Monz, T., Chwalla, M., Roos, C.F., Hennrich, M., Blatt, R.: Experimental multiparticle entanglement dynamics induced by decoherence. Nat. Phys. 6, 943 (2010)CrossRefGoogle Scholar
  4. 4.
    Benjamin, S.C., Browne, D.E., Fitzsimons, J., Morton, J.J.L.: Brokered graph-state quantum computation. New J. Phys. 8, 141 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Briegel, H.J., Browne, D.E., Dür, W., Raussendorf, R., van den Nest, M.: Measurement-based quantum computation. Nat. Phys. 5, 19 (2009)CrossRefGoogle Scholar
  6. 6.
    Scott, A.J.: Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions. Phys. Rev. A 69, 052330 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    Steane, A.M.: Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. A 452, 2551 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Cleve, R., Gottesman, D., Lo, Hoi-Kwong: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Dür, W., Cirac, J.I.: Multiparty teleportation. J. Mod. Opt. 47, 247–255 (2000)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    Kimble, H.J.: The quantum internet. Nature 452, 1023 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Facchi, P., Florio, G., Parisi, G., Pascazio, S.: Maximally multipartite entangled states. Phys. Rev. A 77, 060304 (2008)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Facchi, P.: Multipartite entanglement in qubit systems. Rend. Lincei Mat. Appl. 20, 25 (2009)MathSciNetMATHGoogle Scholar
  17. 17.
    Helwig, W., Cui, W., Latorre, J.I., Riera, A., Lo, H.-K.: Absolute maximal entanglement and quantum secret sharing. Phys. Rev. A 86, 052335 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Arnaud, L., Cerf, N.J.: Exploring pure quantum states with maximally mixed reductions. Phys. Rev. A 87, 012319 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Goyenche, D., Życzkowski, K.: Genuinely multipartite entangled states and orthogonal arrays. Phys. Rev. A 90, 022316 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Jennewein, T., Weihs, G., Pan, J.W., Zeilinger, A.: Experimental nonlocality proof of quantum teleportation and entanglement swapping. Phys. Rev. Lett. 88, 017903 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    Sciarrino, F., Lombardi, E., Milani, G., De Martini, F.: Delayed-choice entanglement swapping with vacuum-one-photon quantum states. Phys. Rev. A 66, 024309 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    Jennewein, T., Aspelmeyer, M., Brukner, Č., Zeilinger, A.: Experimental proposal of switched delayed-choice for entanglement swapping. Int. J. Quantum Inf. 3, 73 (2005)CrossRefMATHGoogle Scholar
  23. 23.
    Ma, X.S., Zotter, S., Ko er, J., Ursin, R., Jennewein, T., Brukner, Č., Zeilinger, A.: Experimental delayed-choice entanglement swapping. Nat. Phys. 8, 480 (2012)CrossRefGoogle Scholar
  24. 24.
    Su, X., Tian, C., Deng, X., Li, Q., Xie, Changde, Peng, Kunchi: Quantum entanglement swapping between two multipartite entangled states Phys. Rev. Lett. 117, 240503 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Greenberger, D.M., Horne, M.A., Shimony, A.: Bell theorem without inequalities. Am. J. Phys. 58, 1131 (1990)ADSMathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Gisin, N., Bechmann-Pasquinucci, H.: Bell inequality, Bell states and maximally entangled states for n qubits. Phys. Lett. A 246, 1 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Gour, G., Wallach, N.R.: All maximally entangled four qubits states. J. Math. Phys. 51, 112201 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H.: Perfect quantum error correcting code. Phys. Rev. Lett. 77, 198 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    Borras, A., Plastino, A.R., Batle, J., Zander, C., Casas, M., Plastino, A.: Multi-qubit systems: highly entangled states and entanglement distribution. J. Phys. A 40, 13407 (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Huber, F., Gühne, O., Siewert, J.: Absolutely maximally entangled states of seven qubits do not exist. arXiv:1608.06228v1 [quant-ph]
  32. 32.
    Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74, 062320 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    Yildiz, A.: Optimal distillation of three-qubit W states. Phys. Rev. A 82, 012317 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of PhysicsSharif University of TechnologyTehranIran

Personalised recommendations