Skip to main content
Log in

Creating maximally entangled states by gluing

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We introduce a general method of gluing multi-partite states and show that entanglement swapping is a special class of a wider range of gluing operations. The gluing operation of two m and n qudit states consists of an entangling operation on two given qudits of the two states followed by operations of measurements of the two qudits in the computational basis. Depending on how many qudits (two, one or zero) we measure, we have three classes of gluing operation, resulting respectively in \(m+n-2\), \(m+n-1\), or \(m+n\) qudit states. Entanglement swapping belongs to the first class and has been widely studied, while the other two classes are presented and studied here. In particular, we study how larger GHZ and W states can be constructed when we glue the smaller GHZ and W states by the second method. Finally we prove that when we glue two states by the third method, the k-uniformity of the states is preserved. That is when a k-uniform state of m qudits is glued to a \(k'\)-uniform state of n qudits, the resulting state will be a \(\hbox {min}(k,k')\)-uniform of \(m+n\) qudits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  2. Aolita, L., Chaves, R., Cavalcanti, D., Acín, A., Davidovich, L.: Scaling laws for the decay of multiqubit entanglement. Phys. Rev. Lett. 100, 080501 (2008)

    Article  ADS  Google Scholar 

  3. Barreiro, J.T., Schindler, P., Gühne, O., Monz, T., Chwalla, M., Roos, C.F., Hennrich, M., Blatt, R.: Experimental multiparticle entanglement dynamics induced by decoherence. Nat. Phys. 6, 943 (2010)

    Article  Google Scholar 

  4. Benjamin, S.C., Browne, D.E., Fitzsimons, J., Morton, J.J.L.: Brokered graph-state quantum computation. New J. Phys. 8, 141 (2006)

    Article  ADS  Google Scholar 

  5. Briegel, H.J., Browne, D.E., Dür, W., Raussendorf, R., van den Nest, M.: Measurement-based quantum computation. Nat. Phys. 5, 19 (2009)

    Article  Google Scholar 

  6. Scott, A.J.: Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions. Phys. Rev. A 69, 052330 (2004)

    Article  ADS  Google Scholar 

  7. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098 (1996)

    Article  ADS  Google Scholar 

  8. Steane, A.M.: Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. A 452, 2551 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Cleve, R., Gottesman, D., Lo, Hoi-Kwong: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)

    Article  ADS  Google Scholar 

  10. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  11. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  12. Dür, W., Cirac, J.I.: Multiparty teleportation. J. Mod. Opt. 47, 247–255 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  13. Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997)

    Article  ADS  Google Scholar 

  14. Kimble, H.J.: The quantum internet. Nature 452, 1023 (2008)

    Article  ADS  Google Scholar 

  15. Facchi, P., Florio, G., Parisi, G., Pascazio, S.: Maximally multipartite entangled states. Phys. Rev. A 77, 060304 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  16. Facchi, P.: Multipartite entanglement in qubit systems. Rend. Lincei Mat. Appl. 20, 25 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Helwig, W., Cui, W., Latorre, J.I., Riera, A., Lo, H.-K.: Absolute maximal entanglement and quantum secret sharing. Phys. Rev. A 86, 052335 (2012)

    Article  ADS  Google Scholar 

  18. Arnaud, L., Cerf, N.J.: Exploring pure quantum states with maximally mixed reductions. Phys. Rev. A 87, 012319 (2013)

    Article  ADS  Google Scholar 

  19. Goyenche, D., Życzkowski, K.: Genuinely multipartite entangled states and orthogonal arrays. Phys. Rev. A 90, 022316 (2014)

    Article  ADS  Google Scholar 

  20. Jennewein, T., Weihs, G., Pan, J.W., Zeilinger, A.: Experimental nonlocality proof of quantum teleportation and entanglement swapping. Phys. Rev. Lett. 88, 017903 (2001)

    Article  ADS  Google Scholar 

  21. Sciarrino, F., Lombardi, E., Milani, G., De Martini, F.: Delayed-choice entanglement swapping with vacuum-one-photon quantum states. Phys. Rev. A 66, 024309 (2002)

    Article  ADS  Google Scholar 

  22. Jennewein, T., Aspelmeyer, M., Brukner, Č., Zeilinger, A.: Experimental proposal of switched delayed-choice for entanglement swapping. Int. J. Quantum Inf. 3, 73 (2005)

    Article  MATH  Google Scholar 

  23. Ma, X.S., Zotter, S., Ko er, J., Ursin, R., Jennewein, T., Brukner, Č., Zeilinger, A.: Experimental delayed-choice entanglement swapping. Nat. Phys. 8, 480 (2012)

    Article  Google Scholar 

  24. Su, X., Tian, C., Deng, X., Li, Q., Xie, Changde, Peng, Kunchi: Quantum entanglement swapping between two multipartite entangled states Phys. Rev. Lett. 117, 240503 (2016)

    Article  ADS  Google Scholar 

  25. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  26. Greenberger, D.M., Horne, M.A., Shimony, A.: Bell theorem without inequalities. Am. J. Phys. 58, 1131 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Gisin, N., Bechmann-Pasquinucci, H.: Bell inequality, Bell states and maximally entangled states for n qubits. Phys. Lett. A 246, 1 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Gour, G., Wallach, N.R.: All maximally entangled four qubits states. J. Math. Phys. 51, 112201 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H.: Perfect quantum error correcting code. Phys. Rev. Lett. 77, 198 (1996)

    Article  ADS  Google Scholar 

  30. Borras, A., Plastino, A.R., Batle, J., Zander, C., Casas, M., Plastino, A.: Multi-qubit systems: highly entangled states and entanglement distribution. J. Phys. A 40, 13407 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Huber, F., Gühne, O., Siewert, J.: Absolutely maximally entangled states of seven qubits do not exist. arXiv:1608.06228v1 [quant-ph]

  32. Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74, 062320 (2006)

    Article  ADS  Google Scholar 

  33. Yildiz, A.: Optimal distillation of three-qubit W states. Phys. Rev. A 82, 012317 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Raissi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raissi, Z., Karimipour, V. Creating maximally entangled states by gluing. Quantum Inf Process 16, 81 (2017). https://doi.org/10.1007/s11128-017-1535-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1535-9

Keywords

Navigation