Skip to main content
Log in

Exact simulation of coined quantum walks with the continuous-time model

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The connection between coined and continuous-time quantum walk models has been addressed in a number of papers. In most of those studies, the continuous-time model is derived from coined quantum walks by employing dimensional reduction and taking appropriate limits. In this work, we produce the evolution of a coined quantum walk on a generic graph using a continuous-time quantum walk on a larger graph. In addition to expanding the underlying structure, we also have to switch on and off edges during the continuous-time evolution to accommodate the alternation between the shift and coin operators from the coined model. In one particular case, the connection is very natural, and the continuous-time quantum walk that simulates the coined quantum walk is driven by the graph Laplacian on the dynamically changing expanded graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Let \(n_t\) be a Poisson random variable and denote the expected value by \(\langle \,\cdot \,\rangle \). For the continuous-time transition matrix \(M_{\mathrm{CT}}(t)\) and the discrete-time transition matrix \(M_{\mathrm{DT}}(k)\) of the RW, we have

    $$\begin{aligned} M_{\mathrm{CT}}(t) = \langle M_{\mathrm{DT}}(n_t) \rangle = \sum _{k=0}^\infty P(n_t=k)M_{\mathrm{DT}}(k) = \text {exp}[t(M_{\mathrm{DT}}-I)] . \end{aligned}$$

    .

  2. In order to write down a matrix representation of C or S, one first has to decide how to list the basis elements \(|v,j\rangle \). Arranging them with respect to v yields a matrix representation of C that is in block diagonal form. The representation of S can be made block diagonal by ordering in the j-component.

References

  1. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687–1690 (1993)

    Article  ADS  Google Scholar 

  2. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing, STOC ’01, pp. 50–59. ACM, New York (2001)

  3. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58, 915–928 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  4. Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003)

    Article  ADS  Google Scholar 

  5. Hillery, M., Bergou, J., Feldman, E.: Quantum walks based on an interferometric analogy. Phys. Rev. A 68, 032314 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  6. Hughes, B.D.: Random Walks and Random Environments: Random walks, vol. 1. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  7. Lawler, G.F., Limic, V.: Random Walk: A Modern Introduction. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  8. Ambainis, A.: Quantum walks and their algorithmic applications. Int. J. Quantum Inf. 01(04), 507–518 (2003)

    Article  MATH  Google Scholar 

  9. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, STOC ’96, pp. 212–219. ACM, New York (1996)

  10. Childs, A.M., Goldstone, J.: Spatial search by quantum walk. Phys. Rev. A 70, 022314 (2004)

    Article  ADS  Google Scholar 

  11. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, pp. 1099–1108. Society for Industrial and Applied Mathematics, Philadelphia (2005)

  12. Wong, T.G.: Faster quantum walk search on a weighted graph. Phys. Rev. A 92, 032320 (2015)

    Article  ADS  Google Scholar 

  13. Chakraborty, S., Novo, L., Ambainis, A., Omar, Y.: Spatial search by quantum walk is optimal for almost all graphs. Phys. Rev. Lett. 116, 100501 (2016)

    Article  ADS  Google Scholar 

  14. Childs, A.M.: On the relationship between continuous- and discrete-time quantum walk. Commun. Math. Phys. 294(2), 581–603 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Paparo, G.D., Müller, M., Francesc, C., Martin-Delgado, M.A.: Quantum google in a complex network. Sci. Rep. 3, 2773 (2013)

    Article  ADS  Google Scholar 

  16. Mallick, A., Mandal, S., Chandrashekar, C.M.: Simulation of neutrino oscillations using discrete-time quantum walk. ArXiv e-prints, April (2016)

  17. Meyer, D.A.: On the absence of homogeneous scalar unitary cellular automata. Phys. Lett. A 223(5), 337–340 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Portugal, R., Santos, R.A.M., Fernandes, T.D., Gonçalves, D.N.: The staggered quantum walk model. Quantum Inf. Process. 15(1), 85–101 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Portugal, R.: Staggered quantum walks on graphs. Phys. Rev. A 93, 062335 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. Strauch, F.W.: Connecting the discrete- and continuous-time quantum walks. Phys. Rev. A 74, 030301 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  21. D’Alessandro, D.: Connection between continuous and discrete time quantum walks. From D-dimensional lattices to general graphs. Rep. Math. Phys. 66(1), 85–102 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. di Molfetta, G., Debbasch, F.: Discrete-time quantum walks: continuous limit and symmetries. J. Math. Phys. 53(12), 123302 (2012)

  23. Dheeraj, M.N., Brun, T.A.: Continuous limit of discrete quantum walks. Phys. Rev. A 91, 062304 (2015)

    Article  Google Scholar 

  24. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: 45th Annual IEEE symposium on foundations of computer science, 2004. Proceedings, pp. 32–41, Oct (2004)

  25. Romanelli, A., Siri, R., Abal, G., Auyuanet, A., Donangelo, R.: Decoherence in the quantum walk on the line. Phys. A 347(C), 137–152 (2005)

    Article  MathSciNet  Google Scholar 

  26. Oliveira, A.C., Portugal, R., Donangelo, R.: Decoherence in two-dimensional quantum walks. Phys. Rev. A 74(012312), 012312 (2006)

  27. Kollár, B., Kiss, T., Novotný, J., Jex, I.: Asymptotic dynamics of coined quantum walks on percolation graphs. Phys. Rev. Lett. 108, 230505 (2012)

    Article  ADS  Google Scholar 

  28. Mülken, O., Pernice, V., Blumen, A.: Quantum transport on small-world networks: a continuous-time quantum walk approach. Phys. Rev. E 76, 051125 (2007)

    Article  ADS  Google Scholar 

  29. Anishchenko, A., Blumen, A., Mülken, O.: Enhancing the spreading of quantum walks on star graphs by additional bonds. Quantum Inf. Process. 11(5), 1273–1286 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Darázs, Z., Kiss, T.: Time evolution of continuous-time quantum walks on dynamical percolation graphs. J. Phys. A: Math. Theor. 46(37), 375305 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Portugal, R.: Establishing the equivalence between Szegedy’s and coined quantum walks using the staggered model. Quantum Inf. Process. 15(4), 1387–1409 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Shapir, Y., Aharony, A., Harris, A.B.: Localization and quantum percolation. Phys. Rev. Lett. 49, 486–489 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  33. Santos, R.A.M., Portugal, R., Fragoso, M.D.: Decoherence in quantum Markov chains. Quantum Inf. Process. 13(2), 559–572 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

P.P. would like to thank CNPq for its financial support (Grant Nos. 400216/2014-0 and 150726/2015-5). R.P. acknowledges financial support from Faperj (Grant No. E-26/102.350/2013) and CNPq (Grant Nos. 303406/2015-1 and 474143/2013-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Philipp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Philipp, P., Portugal, R. Exact simulation of coined quantum walks with the continuous-time model. Quantum Inf Process 16, 14 (2017). https://doi.org/10.1007/s11128-016-1475-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1475-9

Keywords

Navigation