Skip to main content
Log in

Enhancing the spreading of quantum walks on star graphs by additional bonds

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the dynamics of continuous-time quantum walks (CTQW) on networks with highly degenerate eigenvalue spectra of the corresponding connectivity matrices. In particular, we consider the two cases of a star graph and of a complete graph, both having one highly degenerate eigenvalue, while displaying different topologies. While the CTQW spreading over the network—in terms of the average probability to return or to stay at an initially excited node—is in both cases very slow, also when compared to the corresponding classical continuous-time random walk (CTRW), we show how the spreading is enhanced by randomly adding bonds to the star graph or removing bonds from the complete graph. Then, the spreading of the excitations may become very fast, even outperforming the corresponding CTRW. Our numerical results suggest that the maximal spreading is reached halfway between the star graph and the complete graph. We further show how this disorder-enhanced spreading is related to the networks’ eigenvalues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander S., Orbach R.: Density of states on fractals: “fractons”. J. Phys. (Paris) Lett. 43, 625–631 (1982)

    Article  Google Scholar 

  2. Bray A., Rodgers G.: Diffusion in a sparsely connected space: a model for glassy relaxation. Phys. Rev. B 38, 11461 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  3. Burgarth D., Maruyama K., Nori F.: Coupling strength estimation for spin chains despite restricted access. Phys. Rev. A 79, 020305 (2009)

    Article  ADS  Google Scholar 

  4. Cvetković D., Doob M., Sachs H.: Spectra of Graphs: Theory and Applications. Academic Press, New York, NY (1997)

    Google Scholar 

  5. Darázs Z., Kiss T.: Pólya number of the continuous-time quantum walks. Phys. Rev. A 81, 062319 (2010)

    Article  ADS  Google Scholar 

  6. Doi M., Edwards S.: The Theory of Polymer Dynamics. Oxford University Press, Oxford (1988)

    Google Scholar 

  7. Farhi E., Gutmann S.: Quantum computation and decision trees. Phys. Rev. A 58, 915 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  8. Feldman E., Hillery M., Lee H.W., Reitzner D., Zheng H., Bužek V.: Quantum computation and decision trees. Phys. Rev. A 82, 040301 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  9. Kempe J.: Quantum random walks—an introductory overview. Contemp. Phys. 44, 307 (2003)

    Article  ADS  Google Scholar 

  10. Kenkre V., Reineker P.: Exciton Dynamics in Molecular Crystals and Aggregates. Springer, Berlin (1982)

    Google Scholar 

  11. Mülken O., Bierbaum V., Blumen A.: Coherent exciton transport in dendrimers and continuous-time quantum walks. J. Chem. Phys. 124, 124905 (2006)

    Article  ADS  Google Scholar 

  12. Mülken O., Blumen A.: Spacetime structures of continuous-time quantum walks. Phys. Rev. E 71, 036128 (2005)

    Article  ADS  Google Scholar 

  13. Mülken O., Blumen A.: Efficiency of quantum and classical transport on graphs. Phys. Rev. E 73, 066117 (2006)

    Article  ADS  Google Scholar 

  14. Mülken O., Blumen A.: Continuous-time quantum walks: models for coherent transport on complex networks. Phys. Rep. 502, 37 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  15. Mülken O., Pernice V., Blumen A.: Quantum transport on small-world networks: a continuous-time quantum walk approach. Phys. Rev. E 76, 051125 (2007)

    Article  ADS  Google Scholar 

  16. Mülken O., Volta A., Blumen A.: Asymmetries in symmetric quantum walks on two-dimensional networks. Phys. Rev. A 72, 042334 (2005)

    Article  ADS  Google Scholar 

  17. Reitzner D., Hillery M., Feldman E., Bužek V.: Quantum searches on highly symmetric graphs. Phys. Rev. A 79, 012323 (2009)

    Article  ADS  Google Scholar 

  18. Salimi S.: Continuous-time quantum walks on star graphs. Ann. Phys. 324, 1185–1193 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. van Kampen N.: Stochastic Processes in Physics and Chemistry. North Holland, Amsterdam (1992)

    Google Scholar 

  20. Xu X.: Exact analytical results for quantum walks on star graphs. J. Phys. A 42, 115205 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  21. Ziman J.: Principles of the Theory of Solids. Cambridge University Press, Cambridge, UK (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Mülken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anishchenko, A., Blumen, A. & Mülken, O. Enhancing the spreading of quantum walks on star graphs by additional bonds. Quantum Inf Process 11, 1273–1286 (2012). https://doi.org/10.1007/s11128-012-0376-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0376-9

Keywords

Navigation