Skip to main content
Log in

Scattering-induced quantum correlation in electronic waveguides with static magnetic impurities

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Entanglement generation due to low-energy scattering of the transporting electrons in an electronic waveguide by a quantum dot magnetic impurity is theoretically investigated. The transverse confining potential of the waveguide is considered as a two-dimensional harmonic potential, and the interaction of the electron with the impurity is described by a zero-range pseudopotential modulated by an Ising or a Heisenberg spin interaction. Our calculation shows that the scattering process leads to creation of a considerable amount of entanglement in the state of the reflected and transmitted electrons. The situation is extended to the scattering of the electrons by two well-separated magnetic impurities localized on the nanowire axis. It is shown that the scattering process causes the magnetic impurities embedded in the nanowire to share their quantum information; subsequently, they can be entangled by spin interaction with the injected electron. The created entanglement between the impurities is calculated and discussed. It is shown that the exact three-dimensional problem can be approximated as a one-dimensional problem under certain circumstances. The approximate results are compared to exact calculations and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2011)

    MATH  Google Scholar 

  2. Karkare, M.: Nanotechnology: Fundamentals and Applications. I. K. International Publishing House Pvt. Ltd., New Delhi (2008)

    Google Scholar 

  3. Fulekar, M.H.: Nanotechnology: Importance and Applications. I. K. International Publishing House Pvt. Ltd., New Delhi (2010)

    Google Scholar 

  4. Abdullah, N.R., Tang, C.S., Manolescu, A., Gudmundsson, V.: Electron transport through a quantum dot assisted by cavity photons. J. Phys. Condens. Matter 25, 465302 (2013)

    Article  ADS  Google Scholar 

  5. Ionicioiu, R., Amaratunga, G., Udrea, F.: Quantum computation with ballistic electrons. Int. J. Mod. Phys. B 15, 125 (2001)

    ADS  MATH  Google Scholar 

  6. Lieber, C.M., Wang, Z.L.: Functional nanowires. MRS Bull. 32, 99 (2007)

    Article  Google Scholar 

  7. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  8. Mishima, K., Hayashi, M., Lin, S.H.: Entanglement in scattering processes. Phys. Lett. A 333, 371 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Costa, A.T., Bose, S., Omar, Y.: Entanglement of two impurities through electron scattering. Phys. Rev. Lett. 96, 230501 (2006)

    Article  ADS  Google Scholar 

  10. Ghanbari-Adivi, E., Soltani, M., Ebtekarnasab, H.: Entanglement generation in scattering of particles from spin impurities. Eur. Phys. J. D 67, 118 (2013)

    Article  ADS  MATH  Google Scholar 

  11. Ghanbari-Adivi, E., Soltani, M., Ebtekarnasab, H.: Entanglement production in scattering of Gaussian wave packets from fixed localized impurities. Eur. Phys. J. D 68, 103 (2014)

    Article  ADS  MATH  Google Scholar 

  12. Ghanbari-Adivi, E., Soltani, M.: Entanglement generation between two colliding particles. Eur. Phys. J. D 68, 336 (2014)

    Article  ADS  Google Scholar 

  13. Metavitsiadis, A., Dillenschneider, R., Eggert, S.: Impurity entanglement through electron scattering in a magnetic field. Phys. Rev. B 89, 155406 (2014)

    Article  ADS  Google Scholar 

  14. Ghanbari-Adivi, E., Soltani, M., Sheikhali, M.N.: Entanglement and quantum discord creation in different setups of a one-dimensional scattering experiment. Eur. Phys. J. D 69, 172 (2015)

    Article  ADS  Google Scholar 

  15. Ciccarello, F., Palma, G.M., Zarcone, M., Omar, Y., Vieira, V.R.: Entanglement controlled single-electron transmittivity. New J. Phys. 8, 2144 (2006)

    Article  Google Scholar 

  16. Yuasa, K., Nakazato, H.: Resonant scattering can enhance the degree of entanglement. J. Phys. A Math. Theor. 40, 297 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Costa, A.T., Bose, S.: Impurity scattering induced entanglement of ballistic electrons. Phys. Rev. Lett. 87, 277901 (2001)

    Article  ADS  Google Scholar 

  18. Cordourier-Maruri, G., Ciccarello, F., Omar, Y., Zarcone, M., de Coss, R., Bose, S.: Implementing quantum gates through scattering between a static and a flying qubit. Phys. Rev. A 82, 052313 (2010)

    Article  ADS  Google Scholar 

  19. Ciccarello, F., Paternostro, M., Bose, S., Browne, D.E., Palma, G.M., Zarcone, M.: Physical model for the generation of ideal resources in multipartite quantum networking. Phys. Rev. A 82, 030302(R) (2010)

    Article  ADS  Google Scholar 

  20. Ciccarello, F., Paternostro, M., Kim, M.S., Palma, G.M.: Extraction of Singlet States from Noninteracting High-Dimensional Spins. Phys. Rev. Lett. 100, 150501 (2008)

    Article  ADS  Google Scholar 

  21. Huang, K.: Statistical Mechanics. Wiley, New York (1987)

    MATH  Google Scholar 

  22. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Olshanii, M.: Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons. Phys. Rev. Lett. 81, 938 (1998)

    Article  ADS  Google Scholar 

  25. Cohen-Tannoudji, C., Diu, B., Laloe, F.: Quantum Mechanics. Wiley, New York (1992)

    MATH  Google Scholar 

  26. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  27. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  28. Hildebrand, R.: Concurrence revisited. J. Math. Phys. 48, 102108 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Z. Alami and M. Sheikhali would like to acknowledge the office of graduate studies at the University of Isfahan for their support and research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ghanbari-Adivi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbari-Adivi, E., Soltani, M., Alami, Z. et al. Scattering-induced quantum correlation in electronic waveguides with static magnetic impurities. Quantum Inf Process 15, 4219–4236 (2016). https://doi.org/10.1007/s11128-016-1390-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1390-0

Keywords

Navigation