Skip to main content
Log in

Edge states transport with impurity/defect in the quantum limit: applied to the relativistic quasiparticles systems

  • Regular Article - Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Using the extended scattering matrix method, the authors explore the interference of edge states in the nanoribbon resonant structure with the relativistic quasiparticles in the quantum limit. By varying the chemical potential in the gated region, the structure of the junction, and the number of the scattering impurities/defects, the scattering coefficients of the edge states can be tuned efficiently. In particular, the Fabry–Pérot like interference in the present structure has been found and the phase accumulated highly depends on both the modes propagating vertically to the interface and the modes propagating along the interface. The feature is fundamentally different from the case of the conventional material where the longitudinal resonant states of the narrow constriction give rise to a clear conductance dips. These results are crucial and useful for engineering nanoelectronic devices based on the relativistic quasiparticles systems.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. K. van Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494 (1980)

    Article  ADS  Google Scholar 

  2. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  3. C. Ciuti, Phys. Rev. B 104, 155307 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  4. M. Buttiker, Phys. Rev. B 38, 9375 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  5. A.H. MacDonald, P. Streda, Phys. Rev. 8(29), 1616 (1984)

    Article  Google Scholar 

  6. P. Streda, J. Kucera, A.H. MacDonald, Phys. Rev. Len. 59, 1973 (1987)

    Article  ADS  Google Scholar 

  7. K. Shizuya, Phys. Rev. Lett. 73, 2907 (1994)

    Article  ADS  Google Scholar 

  8. R.J. Haug, Semicond. Sci. Technol. 8, 131 (1993)

    Article  ADS  Google Scholar 

  9. D. Liu, S.D. Sarma, Phys. Rev. B 49, 2677 (1994)

    Article  ADS  Google Scholar 

  10. K. Akshay, I. Matteo, R.N. Bhatt, Phys. Rev. B 100, 054202 (2019)

    Article  ADS  Google Scholar 

  11. Y.-C. Wang, Y.-J. Shi, P.-J. Wang, Eur. Phys. J. B 95, 35 (2022)

    Article  ADS  Google Scholar 

  12. S. Pu, G.J. Sreejith, J.K. Jain, Phys. Rev. Lett. 128, 116801 (2022)

    Article  ADS  Google Scholar 

  13. P. Goswami, X. Jia, S. Chakravarty, Phys. Rev. B 76, 205408 (2007)

    Article  ADS  Google Scholar 

  14. F. Jeroen, B. Oostinga, C. Gould, L.W. Molenkamp, Phys. Rev. B 86, 081410(R) (2012)

    Article  ADS  Google Scholar 

  15. P.F. Bagwell, Phys. Rev. B 41, 10354 (1990)

    Article  ADS  Google Scholar 

  16. Y.S. Joe, R.M. Cosby, J. Appl. Phys. 81, 6217 (1997)

    Article  ADS  Google Scholar 

  17. C.S. Kim, A.M. Satanin, Y.S. Joe, R.M. Cosby, Phys. Rev. B 60, 10962 (1999)

    Article  ADS  Google Scholar 

  18. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  19. P. Hosur, X.L. Qi, C R Phys. 14, 857 (2013)

    Article  ADS  Google Scholar 

  20. C.W.J. Beenakker, Annu. Rev. Condens. Matter. Phys. 4, 113 (2013)

    Article  ADS  Google Scholar 

  21. Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  22. C. Zhang, Y. Zhang, X. Yuan, S. Lu, J. Zhang, A. Narayan, Y. Liu, H. Zhang, Z. Ni, R. Liu, E.S. Choi, A. Suslov, S. Sanvito, L. Pi, H.Z. Lu, A.C. Potter, F. Xiu, Nature 565, 331 (2019)

    Article  ADS  Google Scholar 

  23. G.-H. Lee, K.-F. Huang, D.K. Efetov, D.S. Wei, S. Hart, T. Taniguchi, K. Watanabe, A. Yacoby, P. Kim, Nat. Phys. 13, 693 (2017)

    Article  Google Scholar 

  24. M.R. Sahu, X. Liu, A.K. Paul, S. Das, P. Raychaudhuri, J.K. Jain, A. Das, Phys. Rev. Lett. 121, 086809 (2018)

    Article  ADS  Google Scholar 

  25. S.-B. Zhang, B. Trauzettel, Phys. Rev. Lett. 122, 257701 (2019)

    Article  ADS  Google Scholar 

  26. W.G. Vandenberghe, M.V. Fischetti, Nat. Commun. 8, 14184 (2017)

    Article  ADS  Google Scholar 

  27. Y. Xu, Y.-R. Chen, J. Wang, J.-F. Liu, Z. Ma, Phys. Rev. Lett. 123, 206801 (2019)

    Article  ADS  Google Scholar 

  28. H. Xu, Phys. Rev. B 50, 8469 (1994)

    Article  ADS  Google Scholar 

  29. Y.-L. Yang, C. Bai, X.-D. Zhang, Eur. Phys. J. B 72, 217 (2009)

    Article  ADS  Google Scholar 

  30. J. Wiedenmann, E. Bocquillon, R.S. Deacon, S. Hartinger, O. Herrmann, T.M. Klapwijk, L. Maier, C. Ames, C. Brüne, C. Gould, A. Oiwa, K. Ishibashi, S. Tarucha, H. Huhmann, L.W. Molenkamp, Nat. Commn. 7, 10303 (2016)

    Article  ADS  Google Scholar 

  31. J.-C. Chen, T.C.A. Yeung, Q.-F. Sun, Phys. Rev. B 81, 245417 (2010)

    Article  ADS  Google Scholar 

  32. C.L. Kane, M.P.A. Fisher, Phys. Rev. B 51, 13449 (1995)

    Article  ADS  Google Scholar 

  33. Y. Yang, Z. Xu, L. Sheng, B.G. Wang, D.Y. Xing, Phys. Rev. Lett. 107, 066602 (2011)

    Article  ADS  Google Scholar 

  34. H.C. Li, L. Sheng, D.Y. Xing, Phys. Rev. Lett. 108, 196806 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12074328, 11504005 and 11874317). C. B. also acknowledges partial support by Nanhu Scholars Program for Young Scholars of XYNU.

Author information

Authors and Affiliations

Authors

Contributions

CB proposed the idea and presided over the study. YY conceived and calculated the setup. YY wrote the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chunxu Bai.

Appendix

Appendix

The overall scattering matrix \(S\left( {L,R} \right)\) through the system can be given as:

\(\begin{aligned}\left( {\begin{array}{*{20}c}{r_{{n,n^{\prime}}} } \\ {t_{{n,n^{\prime}}} } \\ \end{array} }\right) = S\left( {L,R} \right)\left( {\begin{array}{*{20}c} I \\{0} \\ \end{array} } \right){ = }\left( {\begin{array}{*{20}c}{S\left( {L,R} \right)_{{{11}}} } & {S\left( {L,R} \right)_{{{12}}}} \\ {S\left( {L,R} \right)_{{{21}}} } & {S\left( {L,R}\right)_{{{22}}} } \\ \end{array} } \right)\left({\begin{array}{*{20}c} I \\ {0} \\ \end{array} }\right)\end{aligned}\) with \(I\) is the dependent 2 × 2 unit matrix. The scattering matrix \(S\left( {L,R}\right)\) can be obtained by an iteration process from the leftmost interface to the leftmost interface. In this manner, the scattering matrix \(S\left( {L,j}\right)\) can be defined for the subsystem up to the jth region as following

$$\begin{aligned} S\left( {L,j}\right)_{11} &= \left[ {1 - M\left( {j - 1,i} \right)_{11}^{ - 1}S(L,j - 1)_{12} M\left( {j - 1,j} \right)_{21} } \right]^{ - 1}\\ &\quad M\left( {j - 1,j} \right)_{11}^{ - 1} S(L,j - 1)_{11} // S\left({L,j} \right)_{21}\\ &= \left[ {1 - M\left( {j - 1,j} \right)_{11}^{ -1} S(L,j - 1)_{12} M\left( {j - 1,j} \right)_{21} } \right]^{ - 1}\end{aligned}$$
$$\begin{aligned}& \left[ M\left( {j - 1,j} \right)_{11}^{ -1} S(L,j - 1)_{{1{2}}} M\left( {j - 1,j} \right)_{{{22}}} { -}\right.\\ &\left.M\left( {j - 1,j} \right)_{11}^{ - 1} M\left( {j - 1,j}\right)_{{{12}}} \right]\end{aligned} $$
(A1)
$$ \begin{aligned}S\left({L,j} \right)_{{{2}1}} &= S(L,j - 1)_{{{2}2}} M\left( {j - 1,j}\right)_{21} \\ &\quad S(L,j)_{11} { + }S(L,j - 1)_{{{2}1}}\end{aligned}$$
$$ \begin{aligned}S\left({L,j} \right)_{{{22}}} &= S(L,j - 1)_{{{2}2}} M\left( {j - 1,j}\right)_{21} S(L,j)_{{1{2}}}\\&\quad { + }S(L,j - 1)_{{{22}}} M\left( {j -1,j} \right)_{{2{2}}} \end{aligned}$$

where \(M(j -1,j)\) is the transmission matrix can be defined by the odd and even interfaces, respectively.

For odd interface, the wave functions in the adjacent regions are expressed as

$$ \left\{ {\begin{array}{*{20}c} {\Psi _{j} = \sum\limits_{{n = 1}}^{\infty } {\left( {p_{n}^{{\prime j}} e^{{ik_{n} y}} d_{{n,n^{\prime}}}^{j} + f_{n}^{{\prime j}} e^{{ - ik_{n} y}} d_{{n,n^{\prime}}}^{{\prime j}} } \right)\sqrt {2/w_{1} } } \sin \left[ {n\pi \left( {y/w_{1} + 1/2} \right)} \right],} \\ \begin{gathered} \Psi _{{j + 1}} = \sum\limits_{{n = 1}}^{\infty } {\left( {p_{n}^{{j + 1,B}} e^{{ik_{n}^{B} y}} d_{{n,n^{\prime}}}^{{j + 1,B}} + f_{n}^{{j + 1,B}} e^{{ - ik_{n}^{B} y}} d_{{n,n^{\prime}}}^{{\prime j + 1,B}} } \right)\sqrt {2/w_{2} } \sin \left[ {n\pi \left( {\left( {y - w_{1} /2 + w_{2} } \right)/w_{2} } \right)} \right]} \hfill \\ + \sum\limits_{{n = 1}}^{\infty } {\left( {p_{n}^{{j + 1,C}} e^{{ik_{n}^{C} y}} d_{{n,n^{\prime}}}^{{j + 1,C}} + f_{n}^{{j + 1,C}} e^{{ - ik_{n}^{C} y}} d_{{n,n^{\prime}}}^{{\prime j + 1,C}} } \right)\sqrt {2/w_{2} } \sin \left[ {n\pi \left( {\left( {y + w_{1} /2 - w_{2} } \right)/w_{2} } \right)} \right]} , \hfill \\ \end{gathered} \\ \end{array} } \right. $$
(A2)

where \(k_{n}\)and \(k_{n}^{B/C}\)are the nth mode wave vectors of the quasiparticles in the \(y\)direction in the \(N\) and \(P\)regions, respectively. Besides, \(k_{n}^{B}\)and \(k_{n}^{C}\)indicate the wave vectors in the up and down red \(P\)regions, respectively.

To solve the scattering processes, we require the wave functions and its derivative to be continuous at the interface. Moreover, multiplying both sides by \(\sqrt {2/w_{1} } \sin \left[ {n\pi \left( {y/w_{1} + 1/2} \right)} \right]\) or \(\sqrt {2/w_{2} } \sin \left[ {n\pi \left( {\left( {y \pm (w_{1} /2 - w_{2} )} \right)/w_{2} } \right)} \right]\) and integrating over \(y\), we obtain.

$$ \sum\limits_{n = 1}^{\infty } {\rho_{nm} \left( {p_{n}^{\prime j} e^{{ik_{n} l_{1} }} d_{{n,n^{\prime}}}^{j} + f_{n}^{\prime j} e^{{ - ik_{n} l_{1} }} d_{{n,n^{\prime}}}^{\prime j} } \right)} = p_{m}^{j + 1,B} d_{{n,n^{\prime}}}^{j + 1,B} + f_{m}^{j + 1,B} d_{{n,n^{\prime}}}^{\prime j + 1,B} , $$
$$ \sum\limits_{n = 1}^{\infty } {\rho_{nm} \left( {p_{n}^{\prime j} e^{{ik_{n} l_{1} }} d_{{n,n^{\prime}}}^{j} + f_{n}^{\prime j} e^{{ - ik_{n} l_{1} }} d_{{n,n^{\prime}}}^{\prime j} } \right)} = p_{m}^{j + 1,C} d_{{n,n^{\prime}}}^{j + 1,C} + f_{m}^{j + 1,C} d_{{n,n^{\prime}}}^{\prime j + 1,C} , $$
(A3)
$$ k_{m} \left( {p_{m}^{\prime j} e^{{ik_{n} l_{1} }} d_{{n,n^{\prime}}}^{j} - f_{m}^{\prime j} e^{{ - ik_{n} l_{1} }} d_{{n,n^{\prime}}}^{\prime j} } \right) = \sum\limits_{n = 1}^{\infty } {\rho_{mn} k_{n}^{B} \left( {p_{n}^{j + 1,B} d_{{n,n^{\prime}}}^{j + 1,B} - f_{n}^{j + 1,B} d_{{n,n^{\prime}}}^{\prime j + 1,B} } \right)} + \sum\limits_{n = 1}^{\infty } {\rho_{mn} k_{n}^{C} \left( {p_{n}^{j + 1,C} d_{{n,n^{\prime}}}^{j + 1,C} - f_{n}^{j + 1,C} d_{{n,n^{\prime}}}^{\prime j + 1,C} } \right)} , $$

where \( \rho _{{mn}} = {2 / {\sqrt {w_{1} w_{2} } }}\int\limits_{{w_{1} /2 - w_{2} }}^{{w_{1} /2}} \sin \left[ {n\pi \left( {y/w_{1} + 1/2} \right)} \right]\sin \left[ {n\pi \left( {\left( {y - w_{1} /2 + w_{2} } \right)/w_{2} } \right)} \right]dy \) and \(l_{1}\)denote the length of region without the gate voltage. The above formula can be written in matrix form as

$$ \rho^{T} \left({p^{\prime j} d^{j} e^{{ikl_{1} }} + f^{\prime j} d^{\prime j} e^{{- ikl_{1} }} } \right) = p^{j + 1,B} d^{j + 1,B} + f^{j + 1,B}d^{\prime j + 1,B} $$
$$ \rho^{T} \left( {p^{\prime j} d^{j} e^{{ikl_{1} }} + f^{\prime j} d^{\prime j} e^{{ - ikl_{1} }} } \right) = p^{j + 1,C} d^{j + 1,C} + f^{j + 1,C} d^{\prime j + 1,C} $$
(A4)
$$ k\left( {p^{\prime j} d^{j} e^{{ikl_{1} }} - f^{\prime j} d^{\prime j} e^{{ - ikl_{1} }} } \right) = \rho k^{B} \left( {d^{j + 1,B} p^{j + 1,B} - d^{\prime j + 1,B} f^{j + 1,B} } \right) + \rho k^{C} \left( {d^{j + 1,C} p^{j + 1,B} - d^{\prime j + 1,C} f^{j + 1,B} } \right) $$

By introducing the auxiliary coefficient \(p^{j + 1} = p^{j + 1,B} + p^{j + 1,C}\) and \(f^{j + 1} = f^{j + 1,B} + f^{j + 1,C}\), we can get the transmission matrix with the help \(k^{B} = k^{C}\), \(d^{j + 1,B} = d^{j + 1,C}\), and \(d^{\prime j + 1,B} = d^{\prime j + 1,C}\) as

$$ \left( {\begin{array}{*{20}c} {p^{\prime j}} \\ {f^{\prime j} } \\ \end{array} } \right) = M(j,j + 1)\left({\begin{array}{*{20}c} {p^{j + 1} } \\ {f^{j + 1} } \\ \end{array} }\right) $$
(A5)

where \(M(j,j + 1) = \left( {\begin{array}{*{20}l}{e^{{ikl_{1} }} } & 0 \\ 0 & {e^{{ - ikl_{1} }} } \\ \end{array} }\right)^{ - 1} \left( {\begin{array}{*{20}l} {2\rho^{T} d^{j} } &{2\rho^{T} d^{\prime j} } \\ {kd^{j} } & { - kd^{\prime j} } \\\end{array} } \right)^{ - 1}\)

\( \left( {\begin{array}{*{20}l} {d^{j +1,B} } & {d^{\prime j + 1,B} } \\ {\rho d^{j + 1,B} k^{B} } & { -\rho d^{j + 1,B} k^{B} } \\ \end{array} }\right)\).

For even interface, the expansion coefficients \(p^{j}\) and \(f^{j}\) in the region \(j\) and the expansion coefficients \(p^{\prime j + 1}\) and \(f^{\prime j + 1}\) in the region \(j + 1\) are related by a transmission matrix \(M(j,j + 1)\) and it is can be given in a similar manner as

$$ \left( {\begin{array}{*{20}c} {p^{j} } \\ {f^{j} } \\ \end{array} } \right) = M(j,j + 1)\left( {\begin{array}{*{20}c} {p^{\prime j + 1} } \\ {f^{\prime j + 1} } \\ \end{array} } \right) $$
(A6)

where \(M(j,j + 1) = \left( {\begin{array}{*{20}c}{e^{{ik^{B} l_{2} }} } & 0 \\ 0 & {e^{{ - ik^{B} l_{2} }} } \\\end{array} } \right)^{ - 1} \left( {\begin{array}{*{20}c} {d^{j,B}} & {d^{\prime j,B} } \\ {\rho d^{j,B} k^{B} } & { - \rho d^{j,B}k^{B} } \\ \end{array} } \right)^{ - 1}\)

\( \left({\begin{array}{*{20}c} {2\rho^{T} d^{j + 1} } & {2\rho^{T} d^{\prime j + 1} } \\ {kd^{j + 1} } & { - kd^{\prime j + 1} } \\ \end{array} }\right)\) and \(l_{2}\) denote the length of region with the gate voltage.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, C., Yang, Y. Edge states transport with impurity/defect in the quantum limit: applied to the relativistic quasiparticles systems. Eur. Phys. J. B 96, 67 (2023). https://doi.org/10.1140/epjb/s10051-023-00532-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00532-z

Navigation