Skip to main content
Log in

Conceptual aspects of geometric quantum computation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Geometric quantum computation is the idea that geometric phases can be used to implement quantum gates, i.e., the basic elements of the Boolean network that forms a quantum computer. Although originally thought to be limited to adiabatic evolution, controlled by slowly changing parameters, this form of quantum computation can as well be realized at high speed by using nonadiabatic schemes. Recent advances in quantum gate technology have allowed for experimental demonstrations of different types of geometric gates in adiabatic and nonadiabatic evolution. Here, we address some conceptual issues that arise in the realizations of geometric gates. We examine the appearance of dynamical phases in quantum evolution and point out that not all dynamical phases need to be compensated for in geometric quantum computation. We delineate the relation between Abelian and non-Abelian geometric gates and find an explicit physical example where the two types of gates coincide. We identify differences and similarities between adiabatic and nonadiabatic realizations of quantum computation based on non-Abelian geometric phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zanardi, P., Rasetti, M.: Holonomic quantum computation. Phys. Lett. A 264, 94–99 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Pachos, J., Zanardi, P.: Quantum holonomies for quantum computing. Int. J. Mod. Phys. B 15, 1257–1286 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Lloyd, S.: Computation from geometry. Science 292, 1669 (2001)

    Article  Google Scholar 

  4. Ekert, A., Ericsson, M., Hayden, P., Inamori, H., Jones, J.A., Oi, D.K.L., Vedral, V.: Geometric quantum computation. J. Mod. Opt. 47, 2501–2513 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Duan, L.-M., Cirac, J.I., Zoller, P.: Geometric manipulation of trapped ions for quantum computation. Science 292, 1695–1697 (2001)

    Article  ADS  Google Scholar 

  6. Faoro, L., Siewert, J., Fazio, R.: Non-Abelian holonomies, charge pumping, and quantum computation with Josephson junctions. Phys. Rev. Lett. 90, 028301 (2003)

    Article  ADS  Google Scholar 

  7. Solinas, P., Zanardi, P., Zanghì, N., Rossi, F.: Semiconductor-based geometrical quantum gates. Phys. Rev. B 67, 121307 (2003)

    Article  ADS  Google Scholar 

  8. Xiang-Bin, W., Keiji, M.: Nonadiabatic conditional geometric phase shift with NMR. Phys. Rev. Lett. 87, 097901 (2001)

    Article  ADS  Google Scholar 

  9. Zhu, S.-L., Wang, Z.D.: Implementation of universal quantum gates based on nonadiabatic geometric phases. Phys. Rev. Lett. 89, 097902 (2002)

    Article  ADS  Google Scholar 

  10. Zhu, S.-L., Wang, Z.D.: Universal quantum gates based on a pair of orthogonal cyclic states: application to NMR systems. Phys. Rev. A 67, 022319 (2003)

    Article  ADS  Google Scholar 

  11. Zhu, S.-L., Wang, Z.D.: Unconventional geometric quantum computation. Phys. Rev. Lett. 91, 187902 (2003)

    Article  ADS  Google Scholar 

  12. Sjöqvist, E., Tong, D.M., Andersson, L.M., Hessmo, B., Johansson, M., Singh, K.: Non-adiabatic holonomic quantum computation. New J. Phys. 14, 103035 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  13. Jones, J.A., Vedral, V., Ekert, A., Castagnoli, G.: Geometric quantum computation using nuclear magnetic resonance. Nature 403, 869–871 (2000)

    Article  ADS  Google Scholar 

  14. Du, J., Zou, P., Wang, Z.D.: Experimental implementation of high-fidelity unconventional geometric quantum gates using an NMR interferometer. Phys. Rev. A 74, 020302(R) (2006)

    Article  ADS  Google Scholar 

  15. Feng, G., Xu, G., Long, G.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)

    Article  ADS  Google Scholar 

  16. Leibfried, D., DeMarco, B., Meyer, V., Lucas, D., Barrett, M., Britton, J., Itano, W.M., Jelenković, B., Langer, C., Rosenband, T., Wineland, D.J.: Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412–415 (2002)

    Article  ADS  Google Scholar 

  17. Toyoda, K., Uchida, K., Noguchi, A., Haze, S., Urabe, S.: Realization of holonomic single-qubit operations. Phys. Rev. A 87, 052307 (2013)

    Article  ADS  Google Scholar 

  18. Abdumalikov, A.A., Fink, J.M., Juliusson, K., Pechal, M., Berger, S., Wallraff, A., Filipp, S.: Experimental realization of non-Abelian non-adiabatic geometric gates. Nature 496, 482–485 (2013)

    Article  ADS  Google Scholar 

  19. Tian, M., Zafarullah, I., Chang, T., Mohan, R.K., Babbitt, W.R.: Demonstration of geometric operations on the Bloch vectors in an ensemble of rare-earth metal atoms. Phys. Rev. A 79, 022312 (2009)

    Article  ADS  Google Scholar 

  20. Arroyo-Camejo, S., Lazariev, A., Hell, S.W., Balasubramanian, G.: Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin. Nat. Commun. 5, 4870 (2014)

    Article  ADS  Google Scholar 

  21. Zu, C., Wang, W.-B., He, L., Zhang, W.-G., Dai, C.-Y., Wang, F., Duan, L.-M.: Experimental realization of universal geometric quantum gates with solid-state spins. Nature 512, 72–75 (2014)

    Article  ADS  Google Scholar 

  22. Aharonov, Y., Anandan, J.: Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593–1596 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  23. Anandan, J.: Non-adiabatic non-Abelian geometric phase. Phys. Lett. A 133, 171–175 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  24. Solinas, P., Zanardi, P., Zhanghì, N., Rossi, F.: Nonadiabatic geometrical quantum gates in semiconductor quantum dots. Phys. Rev. A 67, 052309 (2003)

    Article  ADS  Google Scholar 

  25. Tian, M., Barber, Z.W., Fischer, J.A., Babbitt, W.R.: Geometric manipulation of the quantum states of two-level atoms. Phys. Rev. A 69, 050301(R) (2004)

    Article  ADS  Google Scholar 

  26. Ota, Y., Kondo, Y.: Composite pulses in NMR as nonadiabatic geometric quantum gates. Phys. Rev. A 80, 024302 (2009)

    Article  ADS  Google Scholar 

  27. Zhu, S.-L., Zanardi, P.: Geometric quantum gates that are robust against stochastic control errors. Phys. Rev. A 72, 020301(R) (2005)

    Article  ADS  Google Scholar 

  28. Azimi Mousolou, V., Canali, C.M., Sjöqvist, E.: Universal non-adiabatic holonomic gates in quantum dots and single-molecule magnets. New J. Phys. 16, 013029 (2014)

  29. Pancharatnam, S.: Generalized theory of interference, and its applications. Part I. coherent pencils. Proc. Indian Acad. Sci. A 44, 247–262 (1956)

    MathSciNet  Google Scholar 

  30. Blais, A., Tremblay, A.-M.S.: Effect of noise on geometric logic gates for quantum computation. Phys. Rev. A 67, 012308 (2003)

    Article  ADS  Google Scholar 

  31. Unanyan, R.G., Fleischhauer, M.: Geometric phase gate without dynamical phases. Phys. Rev. A 69, 050302(R) (2004)

    Article  ADS  Google Scholar 

  32. Berry, M.V.: Transitionless quantum driving. J. Phys. A: Math. Theor. 42, 365303 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, J., Kyaw, T.H., Tong, D.M., Sjöqvist, E., Kwek, L.-C.: Fast non-Abelian geometric gates via transitionless quantum driving. Sci. Rep. 5, 18414 (2015)

    Article  ADS  Google Scholar 

  34. Song, X.-K., Zhang, H., Ai, Q., Qiu, J., Deng, F.-G.: Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspaces with transitionless quantum driving algorithm. New J. Phys. 18, 023001 (2016)

    Article  ADS  Google Scholar 

  35. Messiah, A.: Quantum mechanics. Vol II, p. 744, North-Holland, Amsterdam (1962)

  36. Wilczek, F., Zee, A.: Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett. 52, 2111–2114 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  37. Simon, B.: Holonomy, the quantum adiabatic theorem, and Berry’s phase. Phys. Rev. Lett. 51, 2167–2170 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  38. Florio, G., Facchi, P., Fazio, R., Giovannetti, V., Pascazio, S.: Robust gates for holonomic quantum computation. Phys. Rev. A 73, 022327 (2006)

    Article  ADS  Google Scholar 

  39. Fujii, K.: Note on coherent states and adiabatic connections, curvatures. J. Math. Phys. 41, 4406–4412 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Xu, G.F., Liu, C.L., Zhao, P.Z., Tong, D.M.: Nonadiabatic holonomic gates realized by a single-shot implementation. Phys. Rev. A 92, 052302 (2015)

    Article  ADS  Google Scholar 

  41. Sjöqvist, E.: Nonadiabatic holonomic single-qubit gates in off-resonant \(\Lambda \) systems. Phys. Lett. A 380, 65–67 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  42. Spiegelberg, J., Sjöqvist, E.: Validity of the rotating-wave approximation in nonadiabatic holonomic quantum computation. Phys. Rev. A 88, 054301 (2013)

    Article  ADS  Google Scholar 

  43. Ruseckas, J., Juzeliũnas, G., Öhberg, P., Fleischhauer, M.: Non-Abelian gauge potentials for ultracold atoms with degenerate dark states. Phys. Rev. Lett. 95, 010404 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

E.S. acknowledges financial support from the Swedish Research Council (VR) through Grant No. D0413201. V.A.M. acknowledges support from the Department of Mathematics at University of Isfahan (Iran). C.M.C. is supported by the Department of Physics and Electrical Engineering at Linnaeus University (Sweden) and by the Swedish Research Council (VR) through Grant No. 621-2014-4785.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Sjöqvist.

Appendix

Appendix

We prove that the space of all dark subspaces of the tripod system is G(3; 2). We do this by demonstrating that for any \(\vert {\psi }\rangle \in \text {Span} \{ \vert {0}\rangle , \vert {1}\rangle , \vert {a}\rangle \}\) there exists \(\varvec{\omega }\) such that

$$\begin{aligned} P_d (\varvec{\omega }) \vert {\psi }\rangle = 0. \end{aligned}$$
(38)

By using the linear independence of the two dark states \(\vert {D_0 (\varvec{\omega })}\rangle , \vert {D_1 (\varvec{\omega })}\rangle \), it follows that Eq. (38) is equivalent to

$$\begin{aligned} \langle D_j (\varvec{\omega }) \vert {\psi }\rangle = 0, \ \ \ j=0,1, \end{aligned}$$
(39)

for \(\vert {\psi }\rangle = \lambda _0 \vert {0}\rangle + \lambda _1 \vert {1}\rangle + \lambda _a \vert {a}\rangle \) with arbitrary complex-valued \(\lambda _0,\lambda _1,\lambda _a\) such that \(|\lambda _0|^2 + |\lambda _1|^2 + |\lambda _a|^2 \ne 0\). By using the explicit form of the two dark states (parameterization taken from Ref. [43]), we find

$$\begin{aligned} \sin \phi e^{-iS_{31}} \lambda _0 - \cos \phi e^{-iS_{32}} \lambda _1= & {} 0 , \nonumber \\ \cos \theta \cos \phi e^{-iS_{31}} \lambda _0 + \cos \theta \sin \phi e^{-iS_{32}} \lambda _1- \sin \theta \lambda _a= & {} 0 , \end{aligned}$$
(40)

where \(\omega _0 = \sin \theta \cos \phi e^{iS_1}\), \(\omega _1 = \sin \theta \sin \phi e^{iS_2}\), \(\omega _a = \cos \theta e^{iS_3}\), and \(S_{kl} = S_k - S_l\).

Assume first that \(\lambda _0 \ne 0\) and define \(z_1=\lambda _1/\lambda _0, z_a=\lambda _a/\lambda _0\). We find

$$\begin{aligned} \tan \phi e^{-iS_{21}}= & {} z_1, \nonumber \\ \cot \theta e^{-iS_{31}}= & {} z_a \cos \phi . \end{aligned}$$
(41)

This can be solved for all \(z_1,z_a\) since \(\theta ,\phi ,S_{21},S_{31}\) are independent variables. Explicitly, one finds \(\phi = \tan ^{-1} |z_1|\), \(S_{21} = -\arg z_1\), \(\theta = \cot ^{-1} \left[ |z_a|/ \sqrt{1+|z_1|^2}\right] \), and \(S_{31} = -\arg z_a\). Next, we assume that \(\lambda _0 = 0\) but \(\lambda _1 \ne 0\), and define \(\tilde{z}_a = \lambda _a/\lambda _1\). We find

$$\begin{aligned} \phi= & {} \frac{\pi }{2} , \nonumber \\ \cot \theta e^{-iS_{32}}= & {} \tilde{z}_a \end{aligned}$$
(42)

with solution \(\theta = \cot ^{-1} | \tilde{z}_a|\) and \(S_{32} = -\arg \tilde{z}_a\). Finally, if \(\lambda _0 = \lambda _1=0\), then \(\theta = 0\) solves Eq. (40).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sjöqvist, E., Azimi Mousolou, V. & Canali, C.M. Conceptual aspects of geometric quantum computation. Quantum Inf Process 15, 3995–4011 (2016). https://doi.org/10.1007/s11128-016-1381-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1381-1

Keywords

Navigation