Skip to main content
Log in

Lower limits of spin detection efficiency for two-parameter two-qubit (TPTQ) states with non-ideal ferromagnetic detectors

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We have investigated a TPTQ state as an input state of a non-ideal ferromagnetic detectors. Minimal spin polarization required to demonstrate spin entanglement according to entanglement witness and CHSH inequality with respect to (w.r.t.) their two free parameters have been found, and we have numerically shown that the entanglement witness is less stringent than the direct tests of Bell’s inequality in the form of CHSH in the entangled limits of its free parameters. In addition, the lower limits of spin detection efficiency fulfilling secure cryptographic key against eavesdropping have been derived. Finally, we have considered TPTQ state as an output of spin decoherence channel and the region of ballistic transmission time w.r.t. spin relaxation time and spin dephasing time has been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The bell basis is defined by: \(|{\Psi ^\pm } \rangle =\frac{1}{\sqrt{2}}(|{\uparrow \downarrow } \rangle \pm |{\downarrow \uparrow } \rangle )\), \(|{\Phi ^\pm } \rangle = \frac{1}{\sqrt{2}}(|{\uparrow \uparrow } \rangle \pm |{\downarrow \downarrow } \rangle )\).

References

  1. Cinelli, C., Barbieri, M., Perris, R., Mataloni, Paolo, De Martini, F.: All-versus-nothing nonlocality test of quantum mechanics by two-photon hyperentanglement. Phys. Rev. Lett. 95(24), 240405 (2005)

    Article  ADS  Google Scholar 

  2. Takesue, H., Diamanti, E., Honjo, T., Langrock, C., Fejer, M.M., Inoue, K., Yamamoto, Y.: Differential phase shift quantum key distribution experiment over 105 km fibre. N. J. Phys. 7(1), 232 (2005)

    Article  Google Scholar 

  3. Bennett, Charles H., Brassard, Gilles, Crépeau, Claude, Jozsa, Richard, Peres, Asher, Wootters, William K.: Teleporting an unknown quantum state via dual classical and einstein–podolsky–rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bouwmeester, Dik, Pan, Jian-Wei, Mattle, Klaus, Eibl, Manfred, Weinfurter, Harald, Zeilinger, Anton: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)

    Article  ADS  Google Scholar 

  5. Benson, Oliver, Santori, Charles, Pelton, Matthew, Yamamoto, Yoshihisa: Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84(11), 2513 (2000)

    Article  ADS  Google Scholar 

  6. Salter, C.L., Stevenson, R.M., Farrer, I., Nicoll, C.A., Ritchie, D.A., Shields, A.J.: An entangled-light-emitting diode. Nature 465(7298), 594–597 (2010)

    Article  ADS  Google Scholar 

  7. Kłobus, Waldemar, Grudka, Andrzej, Baumgartner, Andreas, Tomaszewski, Damian, Schönenberger, Christian, Martinek, Jan: Entanglement witnessing and quantum cryptography with nonideal ferromagnetic detectors. Phys. Rev. B 89(12), 125404 (2014)

    Article  ADS  Google Scholar 

  8. Araújo, Mateus, Quintino, Marco Túlio, Cavalcanti, Daniel, Santos, Marcelo França, Cabello, Adán, Cunha, Marcelo Terra: Tests of bell inequality with arbitrarily low photodetection efficiency and homodyne measurements. Phys. Rev. A 86(3), 030101 (2012)

    Article  ADS  Google Scholar 

  9. Brunner, Nicolas, Sharam, James, Vertesi, Tamas: Testing the structure of multipartite entanglement with bell inequalities. Phys. Rev. Lett. 108(11), 110501 (2012)

    Article  ADS  Google Scholar 

  10. Martin, Anthony, Smirr, J.-L., Kaiser, Florian, Diamanti, Eleni, Issautier, Amandine, Alibart, Olivier, Frey, Robert, Zaquine, Isabelle, Tanzilli, Sébastien: Analysis of elliptically polarized maximally entangled states for bell inequality tests. Laser Phys. 22(6), 1105–1112 (2012)

    Article  ADS  Google Scholar 

  11. Ganguly, N., Adhikari, S., Majumdar, A.S.: Common entanglement witnesses and their characteristics. Quantum Inf. Process. 12(1), 425–436 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Barreiro, Julio T., Bancal, Jean-Daniel, Schindler, Philipp, Nigg, Daniel, Hennrich, Markus, Monz, Thomas, Gisin, Nicolas, Blatt, Rainer: Demonstration of genuine multipartite entanglement with device-independent witnesses. Nat. Phys. 9(9), 559–562 (2013)

    Article  Google Scholar 

  13. Simon, David S, Jaeger, Gregg, Sergienko, Alexander V: Entangled-coherent-state quantum key distribution with entanglement witnessing. Phys. Rev. A 89(1), 012315 (2014)

    Article  ADS  Google Scholar 

  14. Nielsen, Michael A., Chuang, Isaac L: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  15. Burkard, Guido, Loss, Daniel, Sukhorukov, Eugene V.: Noise of entangled electrons: bunching and antibunching. Phys. Rev. B 61(24), R16303 (2000)

    Article  ADS  Google Scholar 

  16. Faoro, Lara, Taddei, Fabio: Entanglement detection for electrons via witness operators. Phys. Rev. B 75(16), 165327 (2007)

    Article  ADS  Google Scholar 

  17. Horodecki, Michał, Horodecki, Paweł, Horodecki, Ryszard: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223(1), 1–8 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Bertlmann, Reinhold A., Krammer, Philipp: Entanglement witnesses and geometry of entanglement of two-qutrit states. Ann. Phys. 324(7), 1388–1407 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Clauser, John F., Horne, Michael A., Shimony, Abner, Holt, Richard A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23(15), 880 (1969)

    Article  ADS  Google Scholar 

  20. Horodecki, Ryszard, Horodecki, P., Horodecki, M.: Violating bell inequality by mixed spin-12 states: necessary and sufficient condition. Phys. Lett. A 200(5), 340–344 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Acín, Antonio, Bae, J., Bagan, E., Baig, M., Masanes, Ll, Muñoz-Tapia, R.: Secrecy properties of quantum channels. Phys. Rev. A 73(1), 012327 (2006)

    Article  ADS  Google Scholar 

  22. Verstraete, Frank, Dehaene, Jeroen, DeMoor, Bart: Local filtering operations on two qubits. Phys. Rev. A 64(1), 010101 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  23. Ueli, M.: Secret key agreement by public discussion from common information. IEEE Trans. Inf. Theory 39(3), 733–742 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Devetak, Igor, Winter, Andreas: Relating quantum privacy and quantum coherence: an operational approach. Phys. Rev. Lett. 93(8), 080501 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  25. Modi, Kavan, Brodutch, Aharon, Cable, Hugo, Paterek, Tomasz, Vedral, Vlatko: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84(4), 1655 (2012)

    Article  ADS  Google Scholar 

  26. Aldoshin, S.M., Fel’dman, E.B., Yurishchev, M.A.: Quantum entanglement and quantum discord in magnetoactive materials (review article). Low Temp. Phys. 40(1), 3–16 (2014)

    Article  ADS  Google Scholar 

  27. Aaronson, Benjamin, Franco, Rosario Lo, Adesso, Gerardo: Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence. Phys. Rev. A 88(1), 012120 (2013)

    Article  ADS  Google Scholar 

  28. Yurischev, M.A.: On the quantum discord of general x states. Quantum Inf. Proces. 14(9), 3399–3421 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Tombros, N., Van Der Molen, S.J., Van Wees, B.J.: Separating spin and charge transport in single-wall carbon nanotubes. Phys. Rev. B 73(23), 233403 (2006)

    Article  ADS  Google Scholar 

  30. Aurich, H., Baumgartner, A., Freitag, F., Eichler, A., Trbovic, J., Schönenberger, C.: Permalloy-based carbon nanotube spin-valve. Appl. Phys. Lett. 97(15), 153116 (2010)

    Article  ADS  Google Scholar 

  31. Meservey, Robert, Tedrow, P.M.: Spin-polarized electron tunneling. Phys. Rep. 238(4), 173–243 (1994)

    Article  ADS  Google Scholar 

  32. Moodera, Jagadeesh S., Nassar, Joaquim, Mathon, George: Spin-tunneling in ferromagnetic junctions. Ann. Rev. Mater. Sci. 29(1), 381–432 (1999)

    Article  ADS  Google Scholar 

  33. Soulen, R.J., Byers, J.M., Osofsky, M.S., Nadgorny, B., Ambrose, T., Cheng, S.F., Broussard, Pr R., Tanaka, C.T., Nowak, J., Moodera, J.S., et al.: Measuring the spin polarization of a metal with a superconducting point contact. Science 282(5386), 85–88 (1998)

    Article  ADS  Google Scholar 

  34. Parker, J.S., Watts, S.M., Ivanov, P.G., Xiong, P.: Spin polarization of cro 2 at and across an artificial barrier. Phys. Rev. Lett. 88(19), 196601 (2002)

    Article  ADS  Google Scholar 

  35. Hueso, L.E., Pruneda, J.M., Ferrari, V., Burnell, G.: Jpv-herrera, bd simons, pb littlewood, e. artacho, a. fert, and nd mathur. Nature 445, 410 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nayereh Majd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majd, N., Ghasemi, Z. Lower limits of spin detection efficiency for two-parameter two-qubit (TPTQ) states with non-ideal ferromagnetic detectors. Quantum Inf Process 15, 4137–4157 (2016). https://doi.org/10.1007/s11128-016-1374-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1374-0

Keywords

Navigation