Skip to main content
Log in

Efficient hyperentanglement concentration for N-particle Greenberger–Horne–Zeilinger state assisted by weak cross-Kerr nonlinearity

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this scheme, based on the weak cross-Kerr nonlinearity, an hyperconcentration protocol for the arbitrary partially hyperentangled N-particle Greenberger–Horne–Zeilinger (GHZ) state is presented. Considering the N photons initially in the nonmaximally hyperentangled GHZ state in which photons are entangled simultaneously in the polarization and the spatial-mode degrees of freedom, we can obtain the maximally hyperentangled N-particle GHZ state by the projection measurements on the additional photons. Numerical simulation demonstrates that by iterating the entanglement concentration process, we can improve the success probability of the scheme. Furthermore, we discuss the feasibility of the setups of the protocol, concluding that the present protocol is feasible with existing experimental technology. All these advantages make this scheme more efficient and more convenient in quantum communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)

    Article  ADS  Google Scholar 

  5. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  6. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  7. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  8. Zhu, Z.C., Hu, A.Q., Fu, A.M.: Cryptanalysis and improvement of the controlled quantum secure direct communication by using four particle cluster states. Int. J. Theor. Phys. 53, 1495 (2014)

    Article  MATH  Google Scholar 

  9. Yabushita, A., Kobayashi, T.: Spectroscopy by frequency-entangled photon pairs. Phys. Rev. A 69, 013806 (2004)

    Article  ADS  Google Scholar 

  10. Xiao, L., Wang, C., Zhang, W., Huang, Y.D., Peng, J.D., Long, G.L.: Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs. Phys. Rev. A 77, 042315 (2008)

    Article  ADS  Google Scholar 

  11. Barbieri, M., Vallone, G., Mataloni, P., De Martini, F.: Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement. Phys. Rev. A 75, 042317 (2007)

    Article  ADS  Google Scholar 

  12. Schuck, C., Huber, G., Kurtsiefer, C., Weinfurter, H.: Complete deterministic linear optics Bell state analysis. Phys. Rev. Lett. 96, 190501 (2006)

    Article  ADS  Google Scholar 

  13. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4, 282 (2008)

    Article  Google Scholar 

  14. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  15. Wilde, M.M., Uskov, D.B.: Linear-optical hyperentanglement-assisted quantum error-correcting code. Phys. Rev. A 79, 022305 (2009)

    Article  ADS  Google Scholar 

  16. Bruss, D., Macchiavello, C.: Optimal eavesdropping in cryptography with Three-dimensional quantum states. Phys. Rev. Lett. 88, 127901 (2002)

    Article  ADS  Google Scholar 

  17. Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using \(d\)-level systems. Phys. Rev. Lett. 88, 127902 (2002)

    Article  ADS  Google Scholar 

  18. Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. 57, 1696 (2014)

    Article  Google Scholar 

  19. Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs. Sci. China Phys. Mech. 57, 1238 (2014)

    Article  Google Scholar 

  20. Chang, Y., Xu, C.X., Zhang, S.B., Yan, L.L.: Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad. Chin. Sci. Bull. 88, 2541 (2014)

    Article  Google Scholar 

  21. Krenn, M., Huber, M., Fickler, R., Lapkiewics, R., Ramelow, S., Zeilinger, A.: Generation and confirmation of a (100\(\times \)100)-dimensional entangled quantum system. P. Natl. Acad. Sci. USA 111, 6243 (2014)

    Article  ADS  Google Scholar 

  22. Barreiro, J.T., Langford, N.K., Peters, N.A., Kwiat, P.G.: Generation of hyperentangled photon pairs. Phys. Rev. Lett. 96, 260501 (2005)

    Article  Google Scholar 

  23. Cao, D.Y., Liu, B.H., Wang, Z., Huang, Y.F., Li, C.F., Guo, G.C.: Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons. Sci. Bull. 60, 1128 (2015)

    Article  Google Scholar 

  24. Heilmann, R., Gräfe, M., Nolte, S., Szameit, A.: A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization. Sci. Bull. 60, 96 (2015)

    Article  Google Scholar 

  25. Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010)

    Article  ADS  Google Scholar 

  26. Wang, X.L., Cai, X.D., Su, Z.E., Chen, M.C., Wu, D., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516 (2015)

    Article  ADS  Google Scholar 

  27. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  28. Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818 (1996)

    Article  ADS  Google Scholar 

  29. Pan, J.W., Simon, C., Zellinger, A.: Entanglement purification for quantum communication. Nature 410, 1067 (2001)

    Article  ADS  Google Scholar 

  30. Simon, C., Pan, J.W.: Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89, 257901 (2002)

    Article  ADS  Google Scholar 

  31. Pan, J.W., Gasparonl, S., Ursin, R., Weihs, G., Zellinger, A.: Experimental entanglement purification of arbitrary unknown states. Nature (London) 423, 417 (2003)

    Article  ADS  Google Scholar 

  32. Sheng, Y.B., Zhou, L.: Deterministic entanglement distillation for secure double-server blind quantum computation. Sci. Rep. 15, 7815 (2015)

    Article  Google Scholar 

  33. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)

    Article  ADS  Google Scholar 

  34. Sheng, Y.B., Zhou, L., Long, G.L.: Hybrid entanglement purification for quantum repeaters. Phys. Rev. A 88, 022302 (2013)

    Article  ADS  Google Scholar 

  35. Li, X.H.: Deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044304 (2010)

    Article  ADS  Google Scholar 

  36. Deng, F.G.: One step error correction for multipartite polarization entanglement. Phys. Rev. A 83, 062316 (2011)

    Article  ADS  Google Scholar 

  37. Deng, F.G.: Efficient multipartite entanglement purification with the entanglement link from a subspace. Phys. Rev. A 84, 052312 (2011)

    Article  ADS  Google Scholar 

  38. Sheng, Y.B., Zhou, L.: Deterministic polarization entanglement purification using time-bin entanglement. Laser Phys. Lett. 11, 085203 (2014)

    Article  ADS  Google Scholar 

  39. Ren, B.C., Deng, F.G.: Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities. Laser phys. Lett. 10, 115201 (2013)

    Article  ADS  Google Scholar 

  40. Ren, B.C., Du, F.F., Deng, F.G.: Two-step hyperentanglement purification with the quantum-state-joining method. Phys. Rev. A 90, 052309 (2014)

    Article  ADS  Google Scholar 

  41. Fan, L.L., Xia, Y., Song, J.: Complete hyperentanglement-assisted multi-photon Greenberger-Horne-Zeilinger states analysis with cross-Kerr nonlinearity. Opt. Commun. 317, 102 (2014)

    Article  ADS  Google Scholar 

  42. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  43. Bose, S., Vedral, V., Knight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194 (1999)

    Article  ADS  Google Scholar 

  44. Shi, B.S., Jiang, Y.K., Guo, G.C.: Optimal entanglement purification via entanglement swapping. Phys. Rev. A 62, 054301 (2000)

    Article  ADS  Google Scholar 

  45. Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)

    Article  ADS  Google Scholar 

  46. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)

    Article  ADS  Google Scholar 

  47. Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012)

    Article  ADS  Google Scholar 

  48. Sheng, Y.B., Zhou, L., Zhou, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012)

    Article  ADS  Google Scholar 

  49. Zhou, L., Sheng, Y.B., Cheng, Wen W., Gong, L.Y., Zhao, S.Mei: Efficient entanglement concentration for arbitrary less-entangled NOON states. Quantum Inf. Process. 12, 1307 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Wang, C.: Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system. Phys. Rev. A 86, 012323 (2012)

    Article  ADS  Google Scholar 

  51. Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)

    Article  ADS  Google Scholar 

  52. Li, X.H., Ghose, S.: Hyperconcentration for multipartite entanglement via linear optics. Laser phys. Lett. 11, 125201 (2014)

    Article  ADS  Google Scholar 

  53. Fan, L.L., Xia, Y., Song, J.: Efficient entanglement concentration for arbitrary less-hyperentanglement multi-photon W states with linear optics. Quantum Inf. Process. 13, 1967 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Ren, B.C., Long, G.L.: General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities. Opt. Express 22, 6547 (2014)

    Article  ADS  Google Scholar 

  55. Du, F.F., Deng, F.G.: Heralded entanglement concentration for photon systems with linear-optical elements. Sci. China Phys. Mech. 58, 040303 (2015)

    Google Scholar 

  56. Cao, C., Ding, H., Li, Y., Wang, T.J., Mi, S.C., Zhang, R., Wang, C.: Efficient multipartite entanglement concentration protocol for nitrogen-vacancy center and microresonator coupled systems. Quantum Inf. Process. 14, 1265 (2015)

    Article  ADS  MATH  Google Scholar 

  57. Wang, G.Y., Li, T., Deng, F.G.: High-efficiency atomic entanglement concentration for quantum communication network assisted by cavity QED. Quantum Inf. Process. 14, 1305 (2015)

    Article  ADS  MATH  Google Scholar 

  58. Sheng, Y.B., Zhou, L.: Two-step complete polarization logic Bell-state analysis. Sci. Rep. 5, 13453 (2015)

    Article  ADS  Google Scholar 

  59. Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-not gate. Phys. Rev. Lett. 93, 250502 (2004)

    Article  ADS  Google Scholar 

  60. Bartkowiak, M., Miranowicz, A.: Linear-optical implementations of the iSWAP and controlled NOT gates based on conventional detectors. J. Opt. Soc. Am. B 27, 2369 (2010)

    Article  ADS  Google Scholar 

  61. Kok, P., Munro, W.J., Nemoto, K.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys 79, 135 (2007)

    Article  ADS  Google Scholar 

  62. Kok, P., Lee, H., Dowling, J.P.: Single-photon quantum-nondemolition detectors constructed with linear optics and projective measurements. Phys. Rev. A 66, 063814 (2002)

    Article  ADS  Google Scholar 

  63. Shapiro, J.H.: Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A 73, 062305 (2006)

    Article  ADS  Google Scholar 

  64. Wittmann, C., Andersen, U.L., Takeoka, M., Sych, D., Leuchs, G.: Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector. Phys. Rev. A 81, 062338 (2010)

    Article  ADS  Google Scholar 

  65. He, B., Lin, Q., Simon, C.: Cross-Kerr nonlinearity between continuous-mode coherent states and single photons. Phys. Rev. A 83, 053826 (2011)

    Article  ADS  Google Scholar 

  66. Feizpour, A., Xing, X.X., Steinberg, A.M.: Amplifying single-photon nonlinearity using weak measurements. Phys. Rev. Lett. 107, 133603 (2011)

    Article  ADS  Google Scholar 

  67. Zhu, C., Huang, G.: Giant Kerr nonlinearity, controlled entangled photons and polarization phase gates in coupled quantum-well structures. Opt. Express 19, 23364 (2011)

    Article  ADS  Google Scholar 

  68. Lin, Q., Li, J.: Quantum control gates with weak cross-Kerr nonlinearity. Phys. Rev. A 79, 022301 (2009)

    Article  ADS  Google Scholar 

  69. Li, Y.M., Zhang, K.S., Peng, K.C.: Generation of qudits and entangled qudits. Phys. Rev. A 77, 015802 (2008)

    Article  ADS  Google Scholar 

  70. Jeong, H., An, N.B.: Greenberger-Horne-Zeilinger-type and W-type entangled coherent states: Generation and Bell-type inequality tests without photon counting. Phys. Rev. A 74, 022104 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  71. Jin, G.S., Lin, Y., Wu, B.: Generating multiphoton Greenberger-Horne-Zeilinger states with weak cross-Kerr nonlinearity. Phys. Rev. A 75, 054302 (2007)

    Article  ADS  Google Scholar 

  72. Guo, Q., Bai, J., Cheng, L.Y., Shao, X.Q., Wang, H.F., Zhang, S.: Simplified optical quantum-information processing via weak cross-Kerr nonlinearities. Phys. Rev. A 83, 054303 (2011)

    Article  ADS  Google Scholar 

  73. Lin, Q., He, B.: Addendum to Single-photon logic gates using minimum resources. Phys. Rev. A. 82, 064303 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11575045 and 11374054, the Foundation of Ministry of Education of China under Grant No. 212085, and the Major State Basic Research Development Program of China under Grant No. 2012CB921601.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, HJ., Xia, Y. & Song, J. Efficient hyperentanglement concentration for N-particle Greenberger–Horne–Zeilinger state assisted by weak cross-Kerr nonlinearity. Quantum Inf Process 15, 2033–2052 (2016). https://doi.org/10.1007/s11128-016-1258-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1258-3

Keywords

Navigation