Skip to main content
Log in

Geometry of quantum state space and quantum correlations

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum state space is endowed with a metric structure, and Riemannian monotone metric is an important geometric entity defined on such a metric space. Riemannian monotone metrics are very useful for information-theoretic and statistical considerations on the quantum state space. In this article, considering the quantum state space being spanned by \(2\times 2\) density matrices, we determine a particular Riemannian metric for a state \(\rho \) and show that if \(\rho \) gets entangled with another quantum state, the negativity of the generated entangled state is, upto a constant factor, equal to square root of that particular Riemannian metric . Our result clearly relates a geometric quantity to a measure of entanglement. Moreover, the result establishes the possibility of understanding quantum correlations through geometric approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amari, S., Nagaoka, H.: Methods of Information Geometry. American Mathematical Society (2007)

  2. Morozova, E.A., C̆encov, N.N.: Seriya Sovremennye Problemy Matematiki, Noveishie Dostizheniya. Itogi Nauki Tekh 36, 69–102 (1990)

    Google Scholar 

  3. Petz, D.: Monotone metrics on matrix spaces. Linear Algebra Appl. 244, 81–96 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Petz, D., Hasegawa, H.: On the Riemannian metric of \(\alpha \)-entropies of density matrices. Lett. Math. Phys. 38, 221–225 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Tóth, G., Petz, D.: Extremal properties of the variance and the quantum Fisher information. Phys. Rev. A 87, 032324-1–032324-11 (2013)

  6. Petz, D.: Covariance and Fisher information in quantum mechanics. J. Phys. A 35, 929–939 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Petz, D., Sudár, C.: Geometries of quantum states. J. Math. Phys. 37, 2662–2673 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Gibilisco, P., Isola, T.: Wigner–Yanase information on quantum state space: the geometric approach. J. Math. Phys. 44, 3752–3762 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Gibilisco, P., Isola, T.: A characterisation of Wigner–Yanase skew information among statistically monotone metrics. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 4, 553–557 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wigner, E.P., Yanase, M.M.: Information contents of distribution. Proc. Natl. Acad. Sci. USA 49, 910–918 (1963)

  11. Wigner, E.P., Yanase, M.M.: On the positive semidefinite nature of certain matrix expressions. Can. J. Math. 16, 397–406 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wootters, W.K.: Statistical distance and Hilbert space. Phys. Rev. D 23, 357–362 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  13. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439–3443 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Pires, D.P., Céleri, Lucas C., Soares-Pinto, Diogo O.: Geometric lower bound for a quantum coherence measure. Phys. Rev. A 91, 042330 (2015)

    Article  ADS  Google Scholar 

  15. Schrodinger, E.: The present situation in quantum mechanics. Naturwissenschaften 23, 807–812 (1935)

    Article  ADS  MATH  Google Scholar 

  16. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)

    Article  ADS  Google Scholar 

  17. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Bennett, C.H., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557–560 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Horodecki, M., Oppenheim, J., Winter, A.: Partial quantum information. Nature 436, 673–676 (2005)

    Article  ADS  Google Scholar 

  23. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34, 06899–06905 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information, 10th edn. Cambridge University Press (2010)

  25. Życzkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883–892 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  26. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314-1–032314-11 (2002)

  27. Eltschka, C., Tóth, G., Siewert, J.: Partial transpose as a direct link between concurrence and negativity. Phys. Rev. A 91, 032327-1–032327-9 (2015)

  28. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying Coherence. Phys. Rev. Lett. 113, 140401-1–140410-5 (2014)

  29. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401-1–170401-5 (2014)

  30. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring Quantum Coherence with Entanglement. Phys. Rev. Lett. 115, 020403-1–020403-6 (2015)

Download references

Acknowledgments

The author would like to acknowledge DST, Govt of India, for the financial support through INSPIRE Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasenjit Deb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deb, P. Geometry of quantum state space and quantum correlations. Quantum Inf Process 15, 1629–1638 (2016). https://doi.org/10.1007/s11128-015-1227-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1227-2

Keywords

Navigation