Skip to main content
Log in

Geometry of quantum state space and entanglement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Recently, an explicit relation between a measure of entanglement and a geometric entity has been reported in Deb (Quantum Inf Process 15:1629–1638, 2016). It has been shown that if a qubit gets entangled with another ancillary qubit, then negativity, up to a constant factor, is equal to the square root of a specific Riemannian metric defined on the metric space corresponding to the state space of the qubit. In this article, we consider different class of bipartite entangled states and show explicit relation between two measures of entanglement and Riemannian metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amari, S., Nagaoka, H.: Methods of information geometry. Am. Math. Soc. 191 (2007)

  2. Morozova, E.A., C̆encov, N.N.: Seriya Sovremennye Problemy Matematiki, Noveishie Dostizheniya. Itogi Nauki Tekh. 36, 69–102 (1990)

    Google Scholar 

  3. Petz, D.: Monotone metrics on matrix spaces. Linear Algebra Appl. 244, 81–96 (1996)

    Article  MathSciNet  Google Scholar 

  4. Petz, D., Hasegawa, H.: On the Riemannian metric of \(\alpha \)-entropies of density matrices. Lett. Math. Phys. 38, 221–225 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  5. Tóth, G., Petz, D.: External properties of the variance and the quantum Fisher information. Phys. Rev. A 87, 032324-1–032324-11 (2013)

    ADS  Google Scholar 

  6. Petz, D.: Covariance and Fisher information in quantum mechanics. J. Phys. A 35, 929–939 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  7. Petz, D., Sudár, C.: Geometries of quantum states. J. Math. Phys. 37, 2662–2673 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  8. Gibilisco, P., Isola, T.: Wigner–Yanase information on quantum state space: the geometric approach. J. Math. Phys. 44, 3752–3762 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  9. Gibilisco, P., Isola, T.: A characterisation of Wigner–Yanase skew information among statistically monotone metrics. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 4, 553–557 (2001)

    Article  MathSciNet  Google Scholar 

  10. Wigner, E.P., Yanase, M.M.: Information contents of distribution. Proc. Natl. Acad. Sci. USA 49, 910–918 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  11. Wigner, E.P., Yanase, M.M.: On the positive semidefinite nature of certain matrix expressions. Can. J. Math. 16, 397–406 (1964)

    Article  MathSciNet  Google Scholar 

  12. Wootters, W.K.: Statistical distance and Hilbert space. Phys. Rev. D 23, 357–362 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  13. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439–3443 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  14. Pires, D.P., Céleri, L.C., Soares-Pinto, D.O.: Geometric lower bound for a quantum coherence measure. Phys. Rev. A 91, 042330 (2015)

    Article  ADS  Google Scholar 

  15. Berry, M.V.: Quantum phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984)

    Article  ADS  Google Scholar 

  16. Schrodinger, E.: The present situation in quantum mechanics. Naturwissenschaften 23, 807–812 (1935)

    Article  ADS  Google Scholar 

  17. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)

    Article  ADS  Google Scholar 

  18. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. Bennett, C.H., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  20. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  21. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  22. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557–560 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  23. Horodecki, M., Oppenheim, J., Winter, A.: Partial quantum information. Nature 436, 673–676 (2005)

    Article  ADS  Google Scholar 

  24. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

  25. Deb, P.: Geometry of quantum state space and quantum correlations. Quantum Inf. Process. 15, 1629–1638 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  26. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  27. Życzkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883–892 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  28. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314-1–032314-11 (2002)

    Article  ADS  Google Scholar 

  29. Ishizaka, S., Hiroshima, T.: Maximally entangled mixed states under nonlocal unitary operations in two qubits. Phys. Rev. A 62, 022310 (2000)

    Article  ADS  Google Scholar 

  30. Munro, W.J., James, D.F.V., White, A.G., Kwiat, P.G.: Maximizing the entanglement of two mixed qubits. Phys. Rev. A 64, 030302 (2001)

    Article  ADS  Google Scholar 

  31. Wei, T.-C., Nemoto, K., Goldbart, P.M., Kwiat, P.G., Munro, W.J., Verstraete, F.: Maximal entanglement versus entropy for mixed quantum states. Phys. Rev. A 67, 022110 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Scientific and Engineering Research Board, Govt. of India, for financial support. The authors also acknowledge Bose Institute for providing the research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasenjit Deb.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deb, P., Bej, P. Geometry of quantum state space and entanglement. Quantum Inf Process 18, 72 (2019). https://doi.org/10.1007/s11128-019-2192-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2192-y

Keywords

Navigation