Skip to main content
Log in

Multi-boson correlation sampling

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We give a full description of the problem of multi-boson correlation sampling (MBCS) at the output of a random interferometer for single input photons in arbitrary multi-mode pure states. The MBCS problem is the task of sampling at the interferometer output from the probability distribution associated with polarization- and time-resolved detections. We discuss the richness of the physics and the complexity of the MBCS problem for non-identical input photons. We also compare the MBCS problem with the standard boson sampling problem, where the input photons are assumed to be identical and the system is “classically” averaging over the detection times and polarizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aaronson, S., Arkhipov, A.: The computational complexity of linear optics. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, pp. 333–342. ACM (2011)

  2. Alley, C.O., Shih, Y.H.: A new type of EPR experiment. In: Proceedings of the Second International Symposium on Foundations of Quantum Mechanics in the Light of New Technology, pp. 47–52. Physical Society of Japan, Tokyo (1986)

  3. Bentivegna, M., Spagnolo, N., Vitelli, C., Flamini, F., Viggianiello, N., Latmiral, L., Mataloni, P., Brod, D.J., Galvão, E.F., Crespi, A., Ramponi, R., Osellame, R., Sciarrino, F.: Experimental scattershot boson sampling. Sci. Adv. 1(3), e1400255 (2015)

    Article  ADS  Google Scholar 

  4. Broome, M.A., Fedrizzi, A., Rahimi-Keshari, S., Dove, J., Aaronson, S., Ralph, T.C., White, A.G.: Photonic boson sampling in a tunable circuit. Science 339(6121), 794–798 (2013)

    Article  ADS  Google Scholar 

  5. Carolan, J., Meinecke, J.D.A., Shadbolt, P., Russell, N.J., Ismail, N., Wörhoff, K., Rudolph, T., Thompson, M.G., O’Brien, J.L., Matthews, J.C.F., Laing, A.: On the experimental verification of quantum complexity in linear optics. Nat. Photonics 8(8), 621–626 (2013)

    Article  ADS  Google Scholar 

  6. Crespi, A., Osellame, R., Ramponi, R., Brod, D.J., Galvão, E.F., Spagnolo, N., Vitelli, C., Maiorino, E., Mataloni, P., Sciarrino, F.: Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photonics 7(7), 545–549 (2013)

    Article  ADS  Google Scholar 

  7. Franson, J.D.: Beating classical computing without a quantum computer. Science 339(6121), 767–768 (2013)

    Article  ADS  Google Scholar 

  8. Glauber, R.J.: Nobel lecture: one hundred years of light quanta. Rev. Mod. Phys. 78, 1267–1278 (2006)

    Article  ADS  Google Scholar 

  9. Glauber, R.J.: Quantum Theory of Optical Coherence: Selected Papers and Lectures. Wiley-VCH, Weinheim (2007)

  10. de Guise, H., Tan, S.H., Poulin, I.P., Sanders, B.C.: Coincidence landscapes for three-channel linear optical networks. Phys. Rev. A 89, 063819 (2014)

    Article  ADS  Google Scholar 

  11. Hong, C., Ou, Z., Mandel, L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59(18), 2044–2046 (1987)

    Article  ADS  Google Scholar 

  12. Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. J. ACM 51(4), 671–697 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Keller, M., Lange, B., Hayasaka, K., Lange, W., Walther, H.: Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 431(7012), 1075–1078 (2004)

    Article  ADS  Google Scholar 

  14. Kolchin, P., Belthangady, C., Du, S., Yin, G.Y., Harris, S.E.: Electro-optic modulation of single photons. Phys. Rev. Lett. 101(10), 103601 (2008)

    Article  ADS  Google Scholar 

  15. Laibacher, S., Tamma, V.: The physics and the computational complexity of multiboson correlation interference. arXiv:1507.01541 (2015)

  16. Legero, T., Wilk, T., Hennrich, M., Rempe, G., Kuhn, A.: Quantum beat of two single photons. Phys. Rev. Lett. 93(7), 070503 (2004)

    Article  ADS  Google Scholar 

  17. Loudon, R.: The Quantum Theory of Light. Oxford University Press, New York (2000)

    MATH  Google Scholar 

  18. Metcalf, B.J., Thomas-Peter, N., Spring, J.B., Kundys, D., Broome, M.A., Humphreys, P.C., Jin, X.M., Barbieri, M., Kolthammer, W.S., Gates, J.C., et al.: Multiphoton quantum interference in a multiport integrated photonic device. Nat. Commun. 4, 1356 (2013)

    Article  ADS  Google Scholar 

  19. Minc, H.: Permanents, vol. 6. Cambridge University Press, Cambridge (1984)

    Book  MATH  Google Scholar 

  20. Pan, J.W., Chen, Z.B., Lu, C.Y., Weinfurter, H., Zeilinger, A., Żukowski, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012)

    Article  ADS  Google Scholar 

  21. Polycarpou, C., Cassemiro, K.N., Venturi, G., Zavatta, A., Bellini, M.: Adaptive detection of arbitrarily shaped ultrashort quantum light states. Phys. Rev. Lett. 109(5), 053602 (2012)

    Article  ADS  Google Scholar 

  22. Ra, Y.S., Tichy, M.C., Lim, H.T., Kwon, O., Mintert, F., Buchleitner, A., Kim, Y.H.: Observation of detection-dependent multi-photon coherence times. Nat. Commun. 4, 2451 (2013)

    Article  ADS  Google Scholar 

  23. Ralph, T.: Quantum computation: boson sampling on a chip. Nat. Photonics 7(7), 514–515 (2013)

    Article  ADS  Google Scholar 

  24. Reck, M., Zeilinger, A., Bernstein, H.J., Bertani, P.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994)

    Article  ADS  Google Scholar 

  25. Rohde, P.P.: Boson sampling with photons of arbitrary spectral structure. Phys. Rev. A 91, 012307 (2015)

    Article  ADS  Google Scholar 

  26. Shchesnovich, V.S.: Partial indistinguishability theory for multiphoton experiments in multiport devices. Phys. Rev. A 91, 013844 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  27. Shen, C., Zhang, Z., Duan, L.M.: Scalable implementation of boson sampling with trapped ions. Phys. Rev. Lett. 112, 050504 (2014)

    Article  ADS  Google Scholar 

  28. Shih, Y.H., Alley, C.O.: New type of Einstein–Podolsky–Rosen–Bohm experiment using pairs of light quanta produced by optical parametric down conversion. Phys. Rev. Lett. 61, 2921–2924 (1988)

    Article  ADS  Google Scholar 

  29. Spagnolo, N., Vitelli, C., Bentivegna, M., Brod, D.J., Crespi, A., Flamini, F., Giacomini, S., Milani, G., Ramponi, R., Mataloni, P., Osellame, R., Galvao, E.F., Sciarrino, F.: Experimental validation of photonic boson sampling. Nat. Photonics 8(8), 615–620 (2014)

    Article  ADS  Google Scholar 

  30. Spring, J.B., Metcalf, B.J., Humphreys, P.C., Kolthammer, W.S., Jin, X.M., Barbieri, M., Datta, A., Thomas-Peter, N., Langford, N.K., Kundys, D., et al.: Boson sampling on a photonic chip. Science 339(6121), 798–801 (2013)

    Article  ADS  Google Scholar 

  31. Tamma, V.: Sampling of bosonic qubits. Int. J. Quantum Inf. 12, 1560017 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tamma, V.: Analogue algorithm for parallel factorization of an exponential number of large integers I. theoretical description. arXiv:1505.04577 (2015). (t.b.p. in Quant. Inf. Proc.)

  33. Tamma, V.: Analogue algorithm for parallel factorization of an exponential number of large integers II. optical implementation. arXiv:1505.04584 (2015). (t.b.p. in Quant. Inf. Proc.)

  34. Tamma, V., Alley, C., Schleich, W., Shih, Y.: Prime number decomposition, the hyperbolic function and multi-path michelson interferometers. Found. Phys. 42(1), 111–121 (2012)

    Article  ADS  Google Scholar 

  35. Tamma, V., Laibacher, S.: Multiboson correlation interferometry with multimode thermal sources. Phys. Rev. A 90, 063836 (2014)

    Article  ADS  Google Scholar 

  36. Tamma, V., Laibacher, S.: Boson sampling with non-identical single photons. J. Mod. Opt. (2015). doi:10.1080/09500340.2015.1088096

  37. Tamma, V., Laibacher, S.: Multiboson correlation interferometry with arbitrary single-photon pure states. Phys. Rev. Lett. 114, 243601 (2015)

    Article  ADS  Google Scholar 

  38. Tamma, V., Nägele, F.: Correlation functions and matrix permanents. In: Proceedings of SPIE 8875, Quantum Communications and Quantum Imaging XI p. 88750F (2013)

  39. Tamma, V., Zhang, H., He, X., Garuccio, A., Schleich, W.P., Shih, Y.: Factoring numbers with a single interferogram. Phys. Rev. A 83, 020304(R) (2011)

    Article  ADS  Google Scholar 

  40. Tamma, V., Zhang, H., He, X., Garuccio, A., Shih, Y.: New factorization algorithm based on a continuous representation of truncated Gauss sums. J. Mod. Opt. 56(18–19), 2125–2132 (2009)

    Article  ADS  MATH  Google Scholar 

  41. Tan, S.H., Gao, Y.Y., de Guise, H., Sanders, B.C.: SU(3) quantum interferometry with single-photon input pulses. Phys. Rev. Lett. 110, 113603 (2013)

    Article  ADS  Google Scholar 

  42. Tichy, M.C.: Sampling of partially distinguishable bosons and the relation to the multidimensional permanent. Phys. Rev. A 91, 022316 (2015)

    Article  ADS  Google Scholar 

  43. Tichy, M.C., Mayer, K., Buchleitner, A., Mølmer, K.: Stringent and efficient assessment of boson-sampling devices. Phys. Rev. Lett. 113, 020502 (2014)

    Article  ADS  Google Scholar 

  44. Tillmann, M., Dakić, B., Heilmann, R., Nolte, S., Szameit, A., Walther, P.: Experimental boson sampling. Nat. Photonics 7(7), 540–544 (2013)

    Article  ADS  Google Scholar 

  45. Tillmann, M., Tan, S.H., Stoeckl, S.E., Sanders, B.C., de Guise, H., Heilmann, R., Nolte, S., Szameit, A., Walther, P.: Generalized multi-photon quantum interference. arXiv:1403.3433 (2014)

  46. Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8(2), 189–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yao, X.C., Wang, T.X., Xu, P., Lu, H., Pan, G.S., Bao, X.H., Peng, C.Z., Lu, C.Y., Chen, Y.A., Pan, J.W.: Observation of eight-photon entanglement. Nat. Photonics 6(4), 225–228 (2012)

    Article  ADS  Google Scholar 

  48. Zhao, T.M., Zhang, H., Yang, J., Sang, Z.R., Jiang, X., Bao, X.H., Pan, J.W.: Entangling different-color photons via time-resolved measurement and active feed forward. Phys. Rev. Lett. 112, 103602 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

V.T. is extremely glad to dedicate this work to the memory of Professor Howard Brandt. His enormous contribution to the field of quantum information is a treasure which will benefit science forever.

Funding V.T. acknowledges the support of the German Space Agency DLR with funds provided by the Federal Ministry of Economics and Technology (BMWi) under Grant No. DLR 50 WM 1556. This work was supported by a grant from the Ministry of Science, Research and the Arts of Baden-Württemberg (Az: 33-7533-30-10/19/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Tamma.

Appendices

Appendix 1: Correlation functions as expectation values of permanents of operator matrices

We derive the expression in Eq. (8) of the correlation function \(G^{(\mathscr {D},\mathscr {S})}_{\{t_j,{\varvec{p}}_j\}}\) for multi-mode single-photon states. Inserting Eq. (5) into Eq. (6), we obtain

$$\begin{aligned} G^{(\mathscr {D},\mathscr {S})}_{\{t_j,{\varvec{p}}_j\}}&= \langle \mathscr {S} \vert \prod _{j=1}^N \Big [ \sum _{i'=1}^N \big ( \mathscr {U}^{(\mathscr {D},\mathscr {S})}_{j,i'}\big )^{*} \Big ( {\varvec{p}}_j^{*} \cdot {\hat{{\varvec{E}}}}_{i'}^{(-)}(t_j -\Delta t) \Big ) \Big ]\\&\quad \times \Big [ \sum _{i=1}^N \mathscr {U}^{(\mathscr {D},\mathscr {S})}_{j,i} \Big ( {\varvec{p}}_j \cdot {\hat{{\varvec{E}}}}_{i}^{(+)}(t_j -\Delta t) \Big ) \Big ] \vert \mathscr {S} \rangle , \end{aligned}$$

which, after interchanging the order of the product and the two summations, becomes

$$\begin{aligned} G^{(\mathscr {D},\mathscr {S})}_{\{t_j,{\varvec{p}}_j\}}= & {} \sum _{ \{ i_j, i_j' \}_{j=1,\ldots ,N} }\,\, \prod _{j=1}^N \big ( \mathscr {U}^{(\mathscr {D},\mathscr {S})}_{j,i_j'} \big )^{*} \mathscr {U}^{(\mathscr {D},\mathscr {S})}_{j,i_j}\nonumber \\&\times \langle \mathscr {S} \vert \prod _{j=1}^N \Big ( {\varvec{p}}^{*}_j \cdot {\hat{{\varvec{E}}}}^{(-)}_{i_j'}(t_j - \Delta t) \Big ) \prod _{j=1}^N \Big ( {\varvec{p}}_j \cdot {\hat{{\varvec{E}}}}^{(+)}_{i_j}(t_j - \Delta t) \Big ) \vert \mathscr {S} \rangle . \end{aligned}$$
(27)

Here, the summation over the 2N indices \(\{i_j,i_j'\}_{j=1,\ldots ,N}\) covers all possible ways the N sources contribute to the product of 2N field operators in the expectation value in Eq. (6), independently of the input state.

Equation (27) can be simplified by recalling that the input state is the product of single-photon states in each of the input ports. Thus, since each source can at most contribute one photon, the expression \(\prod _{j=1}^N \big ( {\varvec{p}}_j \cdot {\hat{{\varvec{E}}}}^{(+)}_{i_j}(t_j-\Delta t) \big ) \vert {\mathscr {S}}\rangle \) is non-vanishing only if the indices \(i_j\ (j=1,\ldots ,N)\) take pairwise different values. Introducing the symmetric group \(\varSigma _N\) of all permutations \(\sigma \) of N elements, we find that in the non-vanishing cases, the indices take the values \(i_j = \sigma (j)\), with \(\sigma \in \varSigma _N\). The same argument can also be made for the possible values of the indices \(i_j'\). Therefore, the correlation function in Eq. (27) reduces to

$$\begin{aligned} G^{(\mathscr {D},\mathscr {S})}_{\{t_j,{\varvec{p}}_j\}}&= \sum _{\sigma ,\sigma '\in \varSigma _N} \prod _{j=1}^N \big ( \mathscr {U}^{(\mathscr {D},\mathscr {S})}_{j,\sigma '(j)} \big )^{*} \mathscr {U}^{(\mathscr {D},\mathscr {S})}_{j,\sigma (j)}\nonumber \\&\quad \times \langle \mathscr {S} \vert \prod _{j=1}^N \Big ( {\varvec{p}}^{*}_j \cdot {\hat{{\varvec{E}}}}^{(-)}_{\sigma '(j)}(t_j - \Delta t) \Big ) \Big ( {\varvec{p}}_j \cdot {\hat{{\varvec{E}}}}^{(+)}_{\sigma (j)}(t_j - \Delta t) \Big ) \vert \mathscr {S} \rangle , \end{aligned}$$
(28)

which, with the definition of the operator matrix \({\hat{\mathscr {M}}}_{\{t_j,{\varvec{p}}_j\}}^{(\mathscr {D},\mathscr {S})}\) in Eq. (7), becomes

$$\begin{aligned} G^{(\mathscr {D},\mathscr {S})}_{\{t_j,{\varvec{p}}_j\}}&= \langle \mathscr {S} \vert \Big [ \sum _{\sigma '\in \varSigma _N} \prod _{j=1}^N \big ( \mathscr {U}^{(\mathscr {D},\mathscr {S})}_{j,\sigma '(j)} \big )^{*} \Big ( {\varvec{p}}^{*}_j \cdot {\hat{{\varvec{E}}}}^{(-)}_{\sigma '(j)}(t_j - \Delta t) \Big ) \Big ] \\&\quad \times \Big [ \sum _{\sigma \in \varSigma _N} \prod _{j=1}^N \mathscr {U}^{(\mathscr {D},\mathscr {S})}_{j,\sigma (j)} \Big ( {\varvec{p}}_j \cdot {\hat{{\varvec{E}}}}^{(+)}_{\sigma (j)}(t_j - \Delta t) \Big ) \Big ] \vert \mathscr {S} \rangle \\&= \langle \mathscr {S} \vert \Big ({\text {perm}}{\hat{\mathscr {M}}}^{(\mathscr {D},\mathscr {S})}_{\{t_j,{\varvec{p}}_j\}}\Big )^{\dagger } \Big ( {\text {perm}}{\hat{\mathscr {M}}}^{(\mathscr {D},\mathscr {S})}_{\{t_j,{\varvec{p}}_j\}} \Big ) \vert \mathscr {S} \rangle . \end{aligned}$$

Appendix 2: Correlation functions for multi-mode single-photon states

We demonstrate here the expression for the correlation function for multi-mode single-photon states, found in Eq. (11). From the definition of the input state in Eq. (1), we find the expression

$$\begin{aligned} \prod _{j=1}^N \Big ( {\varvec{p}}_j \cdot {\hat{{\varvec{E}}}}^{(+)}_{\sigma (j)} (t_j - \Delta t) \Big ) \vert {\mathscr {S}}\rangle&= \prod _{j=1}^N \Big ( {\varvec{p}}_j \cdot {\hat{{\varvec{E}}}}^{(+)}_{\sigma (j)} (t_j - \Delta t) \Big ) \bigotimes _{i=1}^N \vert {1[{\varvec{\xi }}_i]}\rangle _{s_i} \bigotimes _{s\notin \mathscr {S}} \vert {0}\rangle _s\nonumber \\&= \bigotimes _{j=1}^N \Big [ \Big ( {\varvec{p}}_j \cdot {\hat{{\varvec{E}}}}^{(+)}_{\sigma (j)} (t_j - \Delta t) \Big ) \vert {1[{\varvec{\xi }}_{\sigma (j)}]}\rangle _{s_{\sigma (j)}} \Big ] \bigotimes _{s\notin \mathscr {S}} \vert {0}\rangle _s \end{aligned}$$
(29)

for the terms in Eq. (28). By using the definition of the single-photon states in Eq. (2) and the field operators

$$\begin{aligned} {\hat{{\varvec{E}}}}^{(+)}_i (t) = \frac{1}{\sqrt{2\pi }} \sum _{\lambda =1,2} {\varvec{e}}_{\lambda } \int \limits _0^{\infty } {\hbox {d}}{\omega }\,{\text {e}}^{-\mathrm {i}\omega t} \hat{a}_{i,\lambda }(\omega ) \end{aligned}$$

in the narrow bandwidth approximation, we obtain

$$\begin{aligned}&\Big ( {\varvec{p}}_j \cdot {\hat{{\varvec{E}}}}^{(+)}_i (t_j- \Delta t) \Big ) \vert {1[{\varvec{\xi }}_i]}\rangle _{s_i}\\&\quad = \frac{1}{\sqrt{2\pi }} \sum _{\lambda =1,2} ({\varvec{p}}_j \cdot {\varvec{e}}_{\lambda }) \int \limits _0^{\infty } {\hbox {d}}{\omega } {\text {e}}^{-\mathrm {i}\omega (t_j-\Delta t)} \hat{a}_{i,\lambda }(\omega ) \sum _{\lambda '=1,2} \int \limits _0^{\infty } {\hbox {d}}{\omega '} ( {\varvec{e}}_{\lambda '} \cdot {\varvec{\xi }}_{i}(\omega ') ) \hat{a}^{\dagger }_{i,\lambda '}(\omega ') \vert {0}\rangle _{s_i}\\&\quad = \frac{1}{\sqrt{2\pi }} \sum _{\lambda ,\lambda '=1,2} \int \limits _0^{\infty } {\hbox {d}}{\omega } \int \limits _0^{\infty } {\hbox {d}}{\omega '} ({\varvec{p}}_j \cdot {\varvec{e}}_{\lambda }) {\text {e}}^{-\mathrm {i}\omega (t_j-\Delta t)}\big ( {\varvec{e}}_{\lambda '} \cdot {\varvec{\xi }}_{i}(\omega ') \big ) \hat{a}_{i,\lambda }(\omega ) \hat{a}^{\dagger }_{i,\lambda '}(\omega ') \vert {0}\rangle _{s_i}\\&\quad = \frac{1}{\sqrt{2\pi }} \sum _{\lambda ,\lambda '=1,2} \int \limits _0^{\infty } {\hbox {d}}{\omega } \int \limits _0^{\infty } {\hbox {d}}{\omega '} ({\varvec{p}}_j \cdot {\varvec{e}}_{\lambda }) {\text {e}}^{-\mathrm {i}\omega (t_j-\Delta t)}\big ( {\varvec{e}}_{\lambda '} \cdot {\varvec{\xi }}_{i}(\omega ') \big )\\&\qquad \times \big [ \hat{a}^{\dagger }_{i,\lambda '}(\omega ')\hat{a}_{i,\lambda }(\omega ) + \delta _{\lambda ,\lambda '} \delta (\omega - \omega ') \big ] \vert {0}\rangle _{s_i}\\&\quad = \frac{1}{\sqrt{2\pi }} \sum _{\lambda =1,2} \int \limits _0^{\infty } {\hbox {d}}{\omega } ({\varvec{p}}_j \cdot {\varvec{e}}_{\lambda }) {\text {e}}^{-\mathrm {i}\omega (t_j-\Delta t)}\big ( {\varvec{e}}_{\lambda } \cdot {\varvec{\xi }}_{i}(\omega ) \big ) \vert {0}\rangle _{s_i}\\&\quad = \frac{1}{\sqrt{2\pi }} \int \limits _0^{\infty } {\hbox {d}}{\omega } \big ({\varvec{p}}_j \cdot {\varvec{\xi }}_i(\omega )\big ) {\text {e}}^{-\mathrm {i}\omega (t_j-\Delta t)} \vert {0}\rangle _{s_i}. \end{aligned}$$

In the narrow bandwidth approximation, we can approximately expand the integration over \(\omega \) to the complete real axis. By using the definition of a Fourier transform

$$\begin{aligned} \mathscr {F}[f](t) :=\frac{1}{\sqrt{2\pi }} \int \limits _{-\infty }^{\infty } {\hbox {d}}{\omega } f(\omega ) {\text {e}}^{-\mathrm {i}\omega t} \end{aligned}$$

we then find

$$\begin{aligned} \Big ( {\varvec{p}}_j \cdot {\hat{{\varvec{E}}}}^{(+)}_i (t_j- \Delta t) \Big ) \vert {1[{\varvec{\xi }}_i]}\rangle _{s_i}&\approx \frac{1}{\sqrt{2\pi }} \int \limits _{-\infty }^{\infty } {\hbox {d}}{\omega } \big ({\varvec{p}}_j \cdot {\varvec{\xi }}_i(\omega )\big ) {\text {e}}^{-\mathrm {i}\omega (t_j-\Delta t)} \vert {0}\rangle _{s_i}\\&= \big ( {\varvec{p}}_j \cdot \mathscr {F}[{\varvec{\xi }}_i](t_j-\Delta t) \big ) \vert {0}\rangle _{s_i} = \big ( {\varvec{p}}_j \cdot {\varvec{\chi }}_s(t_j) \big ) \vert {0}\rangle _{s_i}. \end{aligned}$$

By substituting this result together with Eq. (29), Eq. (28) reduces to the expression

$$\begin{aligned} G^{(\mathscr {D},\mathscr {S})}_{\{t_j,{\varvec{p}}_j\}}&= \sum _{\sigma ,\sigma '\in \varSigma _N} \prod _{j=1}^N \big ( \mathscr {U}^{(\mathscr {D},\mathscr {S})}_{j,\sigma '(j)} \big )^{*} \mathscr {U}^{(\mathscr {D},\mathscr {S})}_{j,\sigma (j)} \big ( {\varvec{p}}_j \cdot {\varvec{\chi }}_{\sigma '(j)}(t_j) \big )^{*} \big ( {\varvec{p}}_j \cdot {\varvec{\chi }}_{\sigma (j)}(t_j) \big )\nonumber \\&= \Big |\sum _{\sigma \in \varSigma _N} \prod _{j=1}^N \mathscr {U}^{(\mathscr {D},\mathscr {S})}_{j,\sigma (j)} \big ({\varvec{p}}_j \cdot {\varvec{\chi }}_{\sigma (j)}(t_j) \big ) \Big |^2 = \left|{{\text {perm}}\mathscr {T}^{(\mathscr {D},\mathscr {S})}_{\{t_j,{\varvec{p}}_j\}}}\right|^2 \end{aligned}$$
(30)

in Eq. (11).

Appendix 3: Probabilities for non-resolved detections

1.1 Accounting for photon bunching

We now derive the probabilities (18) in the case of non-resolved detections in time and polarization. Toward this end, we have to take into account that the correlation function in Eq. (6) is symmetric under permutation of the arguments \(\{t_j,{\varvec{p}}_j\}\) and \(\{t_{j'},{\varvec{p}}_{j'}\}\) if both corresponding photons are detected in the same output port, i.e., if \(d_j = d_{j'}\).

For example, in the case of \(N=2\) and with both photons detected in the same output port d (\(\mathscr {D}=\{d,d\}\)), the correlation function

$$\begin{aligned} G^{(\{d,d\},\mathscr {S})}_{\{t_1,{\varvec{p}}_1;t_2,{\varvec{p}}_2\}} = \langle \mathscr {S} \vert \Big ( {\varvec{p}}^{*}_1 \cdot {\hat{{\varvec{E}}}}^{(-)}_d(t_1) \Big )\Big ( {\varvec{p}}^{*}_2 \cdot {\hat{{\varvec{E}}}}^{(-)}_d(t_2) \Big )\Big ( {\varvec{p}}_2 \cdot {\hat{{\varvec{E}}}}^{(+)}_d(t_2) \Big )\Big ( {\varvec{p}}_1 \cdot {\hat{{\varvec{E}}}}^{(+)}_d(t_1) \Big ) \vert \mathscr {S} \rangle \end{aligned}$$

is symmetric with respect to the two possible detection times and respective polarizations \(\{t_1,{\varvec{p}}_1\}\) and \(\{t_2,{\varvec{p}}_2\}\): \(G^{(\{d,d\},\mathscr {S})}_{\{t_1,{\varvec{p}}_1;t_2,{\varvec{p}}_2\}} = G^{(\{d,d\},\mathscr {S})}_{\{t_2,{\varvec{p}}_2;t_1,{\varvec{p}}_1\}}\). This reflects the fact that both expressions describe the same probability rate of two photons being detected in the output port d, one at time \(t_1\) and with polarization \({\varvec{p}}_1\) and the other at time \(t_2\) and with polarization \({\varvec{p}}_2\).

Therefore, the corresponding probability

$$\begin{aligned} P_{\text {av}}(\{d,d\};\mathscr {S}) =\frac{1}{2!} \sum _{{\varvec{p}}_1,{\varvec{p}}_2 \in \{{\varvec{e}}_1,{\varvec{e}}_2\}}\int \limits _{-\infty }^{\infty } {\hbox {d}}{t_1} \int \limits _{-\infty }^{\infty }{\hbox {d}}{t_2} G^{(\mathscr {D},\mathscr {S})}_{\{t_1,{\varvec{p}}_1;t_2,{\varvec{p}}_2\}} \end{aligned}$$

for non-resolved detections contains the additional factor 1 / 2! in order to avoid double counting.

Generalizing to the case of arbitrary samples \(\mathscr {D}\) in a 2M-port interferometer, where d is contained \(n_d\) times in \(\mathscr {D}\) (\(\sum _{d=1}^{M} n_d = N\)), we find the time- and polarization-averaged probabilities

$$\begin{aligned} P_{\text {av}}(\mathscr {D};\mathscr {S}) = \frac{1}{\prod _{d=1}^{M} n_d!} \sum _{\{{\varvec{p}}_j\}\in \{{\varvec{e}}_1,{\varvec{e}}_2\}^{N}} \int \limits _{-\infty }^{\infty } \Big ( \prod _{j=1}^{N} {\hbox {d}}{t_j} \Big ) G^{(\mathscr {D},\mathscr {S})}_{\{t_j,{\varvec{p}}_j\}} \end{aligned}$$

in Eq. (18).

1.2 Integrated probabilities

We derive now Eq. (24) from the general expression of the probability \(P_{\text {av}}(\mathscr {D};\mathscr {S})\) in Eq. (18) for non-resolved detections. We first substitute in Eq. (18) the value for the correlation function in Eq. (30), yielding

$$\begin{aligned} P_{\text {av}}(\mathscr {D};\mathscr {S})&= \frac{1}{\prod _{d=1}^{M} n_d!} \sum _{\{{\varvec{p}}_j\}\in \{{\varvec{e}}_1,{\varvec{e}}_2\}^{N}} \int \limits _{-\infty }^{\infty }\Big (\prod _{j=1}^N {\hbox {d}}{t_j} \Big )\nonumber \\&\quad \times \sum _{\sigma ,\sigma '\in \varSigma _N} \prod _{j=1}^N \big ( \mathscr {U}^{(\mathscr {D},\mathscr {S})}_{j,\sigma (j)} \big )^{*} \mathscr {U}^{(\mathscr {D},\mathscr {S})}_{j,\sigma '(j)}\big ({\varvec{p}}_j \cdot {\varvec{\chi }}_{\sigma (j)}(t_j) \big )^{*} \big ( {\varvec{p}}_j \cdot {\varvec{\chi }}_{\sigma '(j)}(t_j) \big )\nonumber \\&= \frac{1}{\prod _{d=1}^{M} n_d!} \sum _{\sigma ,\sigma '\in \varSigma _N} \prod _{j=1}^N \big ( \mathscr {U}^{(\mathscr {D},\mathscr {S})}_{j,\sigma (j)} \big )^{*} \mathscr {U}^{(\mathscr {D},\mathscr {S})}_{j,\sigma '(j)}\nonumber \\&\quad \times \Bigg [ \sum _{{\varvec{p}}_j \in \{{\varvec{e}}_1, {\varvec{e}}_2\}} \int \limits _{-\infty }^{\infty } {\hbox {d}}{t_j} \big ({\varvec{p}}_j \cdot {\varvec{\chi }}_{\sigma (j)}(t_j) \big )^{*} \big ( {\varvec{p}}_j \cdot {\varvec{\chi }}_{\sigma '(j)}(t_j) \big ) \Bigg ]\nonumber \\&= \frac{1}{\prod _{d=1}^{M} n_d!} \sum _{\sigma ,\sigma '\in \varSigma _N} \prod _{j=1}^N \big ( \mathscr {U}^{(\mathscr {D},\mathscr {S})}_{j,\sigma (j)} \big )^{*} \mathscr {U}^{(\mathscr {D},\mathscr {S})}_{j,\sigma '(j)}\nonumber \\&\quad \times \Bigg [ \int \limits _{-\infty }^{\infty } {\hbox {d}}{t} {\varvec{\chi }}_{\sigma (j)}(t) \cdot {\varvec{\chi }}_{\sigma '(j)}(t)\Bigg ]. \end{aligned}$$
(31)

With the substitution \(\sigma ' \rightarrow \rho \circ \sigma \), where \(\rho \in \varSigma _N\), Eq. (31) becomes

$$\begin{aligned} P_{\text {av}}(\mathscr {D};\mathscr {S})&=\frac{1}{\prod _{d=1}^{M} n_d!} \sum _{\rho \in \varSigma _N} \sum _{\sigma \in \varSigma _N} \Bigg [\prod _{j=1}^N \big ( \mathscr {U}^{(\mathscr {D},\mathscr {S})}_{j,\sigma (j)} \big )^{*} \mathscr {U}^{(\mathscr {D},\mathscr {S})}_{j,\rho (\sigma (j))} \Bigg ]\\&\quad \times \Bigg [\prod _{j=1}^N \int \limits _{-\infty }^{\infty } {\hbox {d}}{t} {\varvec{\chi }}_{\sigma (j)}(t) \cdot {\varvec{\chi }}_{\rho (\sigma (j))}(t) \Bigg ]. \end{aligned}$$

Here, the second product can be written as a product over \(i=\sigma (j)\) instead of j since \(\sigma \) is bijective, rendering this expression independent of the permutation \(\sigma \):

$$\begin{aligned} P_{\text {av}}(\mathscr {D};\mathscr {S})&= \frac{1}{\prod _{d=1}^{M} n_d!} \sum _{\rho \in \varSigma _N} \Bigg [ \prod _{i=1}^N \int \limits _{-\infty }^{\infty } {\hbox {d}}{t} {\varvec{\chi }}_{i}(t) \cdot {\varvec{\chi }}_{\rho (i)}(t) \Bigg ]\nonumber \\&\quad \times \sum _{\sigma \in \varSigma _N} \Bigg [\prod _{j=1}^N \big ( \mathscr {U}^{(\mathscr {D},\mathscr {S})}_{j,\sigma (j)} \big )^{*} \mathscr {U}^{(\mathscr {D},\mathscr {S})}_{j,\rho (\sigma (j))} \Bigg ]. \end{aligned}$$
(32)

By using the definitions of \(f_{\rho }(\mathscr {S})\) and \(\mathscr {A}_{\rho }^{(\mathscr {D},\mathscr {S})}\) in Eqs. (20) and (23), Eq. (32) finally reduces to the expression

$$\begin{aligned} P_{\text {av}}(\mathscr {D};\mathscr {S}) = \frac{1}{\prod _{d=1}^{M} n_d!} \sum _{\rho \in \varSigma _N} f_{\rho }(\mathscr {S}) {\text {perm}}A_{\rho }^{(\mathscr {D},\mathscr {S})} \end{aligned}$$

in Eq. (24).

Appendix 4: Two-photon indistinguishability factors for Gaussian spectral distributions

We derive the two-photon indistinguishability factors for Gaussian spectral distributions in Eq. (22). By inserting Eq. (21) into Eq. (19), we obtain the Gaussian integral

$$\begin{aligned} g(i,i')&=\big ( {\varvec{v}}_i \cdot {\varvec{v}}_{i'} \big ) \frac{1}{(2\pi \Delta \omega _i\Delta \omega _{i'})^{1/2}} \\&\quad \times \int \limits _{-\infty }^{\infty } {\hbox {d}}{\omega } \exp \left[ -\frac{(\omega -\omega _{0i})^2}{4(\Delta \omega _i)^2} - \mathrm {i}\omega \, t_{0i} \right] \exp \left[ -\frac{(\omega -\omega _{0i'})^2}{4(\Delta \omega _{i'})^2} + \mathrm {i}\omega \, t_{0i'} \right] , \end{aligned}$$

which, using the well-known relation \(\int \limits _{-\infty }^{\infty }dx \exp (-a x^2 + bx +c) = \sqrt{\pi /a} \,\exp (b^2/(4a) + c)\), can be evaluated as

$$\begin{aligned} g(i,i')&= \big ( {\varvec{v}}_i \cdot {\varvec{v}}_{i'} \big ) \sqrt{\frac{2\Delta \omega _i \Delta \omega _{i'}}{(\Delta \omega _i)^2+(\Delta \omega _{i'})^2}} \exp \left[ -\frac{(\omega _{0i}-\omega _{0i'})^2}{4((\Delta \omega _i)^2 +(\Delta \omega _{i'})^2)}\right] \\&\quad \times \exp \left[ -\frac{(\Delta \omega _i)^2 (\Delta \omega _{i'})^2}{(\Delta \omega _i)^2+(\Delta \omega _{i'})^2} (t_{0i}-t_{0i'})^2\right] \\&\quad \times \exp \left[ -\mathrm {i}\frac{\omega _{0i}(\Delta \omega _{i'})^2 + \omega _{0i'}(\Delta \omega _i)^2}{(\Delta \omega _i)^2 + (\Delta \omega _{i'})^2} (t_{0i}- t_{0i'}) \right] . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamma, V., Laibacher, S. Multi-boson correlation sampling. Quantum Inf Process 15, 1241–1262 (2016). https://doi.org/10.1007/s11128-015-1177-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1177-8

Keywords

Navigation