Skip to main content

On the connection between quantum nonlocality and phase sensitivity of two-mode entangled Fock state superpositions


In two-mode interferometry, for a given total photon number N, entangled Fock state superpositions of the form \((|N-m\rangle _a|m\rangle _b+\mathrm{e}^{i (N-2m)\phi }|m\rangle _a|N-m\rangle _b)/\sqrt{2}\) have been considered for phase estimation. Indeed all such states are maximally mode-entangled and violate a Clauser–Horne–Shimony–Holt (CHSH) inequality. However, they differ in their optimal phase estimation capabilities as given by their quantum Fisher informations. The quantum Fisher information is the largest for the N00N state \((|N\rangle _a|0\rangle _b+\mathrm{e}^{i N\phi }|0\rangle _a|N\rangle _b)/\sqrt{2}\) and decreases for the other states with decreasing photon number difference between the two modes. We ask the question whether for any particular Clauser–Horne (CH) (or CHSH) inequality, the maximal values of the CH (or the CHSH) functional for the states of the above type follow the same trend as their quantum Fisher informations, while also violating the classical bound whenever the states are capable of sub-shot-noise phase estimation, so that the violation can be used to quantify sub-shot-noise sensitivity. We explore CH and CHSH inequalities in a homodyne setup. Our results show that the amount of violation in those nonlocality tests may not be used to quantify sub-shot-noise sensitivity of the above states.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Pan, J.-W., Chen, Z.-B., Chao-Yang, L., Weinfurter, H., Zeilinger, A., Żukowski, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012)

    ADS  Article  Google Scholar 

  2. 2.

    Pezzé, L., Smerzi, A.: Mach–Zehnder interferometry at the Heisenberg limit with coherent and squeezed-vacuum light. Phys. Rev. Lett. 100(7), 073601 (2008)

    ADS  Article  Google Scholar 

  3. 3.

    Pezzé, L., Smerzi, A.: Entanglement, nonlinear dynamics, and the heisenberg limit. Phys. Rev. Lett. 102, 100401 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Plenio, M.B.: Logarithmic negativity: a full entanglement monotone that is not convex. Phys. Rev. Lett. 95, 090503 (2005)

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    Anisimov, P.M., Raterman, G.M., Chiruvelli, A., Plick, W.N., Huver, S.D., Lee, H., Dowling, J.P.: Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit. Phys. Rev. Lett. 104, 103602 (2010)

    ADS  Article  Google Scholar 

  6. 6.

    Birrittella, R., Mimih, J., Gerry, C.C.: Multiphoton quantum interference at a beam splitter and the approach to Heisenberg-limited interferometry. Phys. Rev. A 86, 063828 (2012)

    ADS  Article  Google Scholar 

  7. 7.

    Dowling, J.P.: Quantum optical metrology—the lowdown on high-N00N states. Contemp. Phys. 49(2), 125–143 (2008)

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    Gerry, C.C., Knight, P.L.: Introductory Quantum Optics. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  9. 9.

    Holland, M.J., Burnett, K.: Interferometric detection of optical phase shifts at the Heisenberg limit. Phys. Rev. Lett. 71(9), 1355–1358 (1993)

    ADS  Article  Google Scholar 

  10. 10.

    Joo, J., Munro, W.J., Spiller, T.P.: Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107, 083601 (2011)

    ADS  Article  Google Scholar 

  11. 11.

    Ono, T., Hofmann, H.F.: Effects of photon losses on phase estimation near the Heisenberg limit using coherent light and squeezed vacuum. Phys. Rev. A 81(3), 033819 (2010)

    ADS  Article  Google Scholar 

  12. 12.

    Seshadreesan, K.P., Anisimov, P.M., Lee, H., Dowling, J.P.: Parity detection achieves the heisenberg limit in interferometry with coherent mixed with squeezed vacuum light. New J. Phys. 13(8), 083026 (2011)

    ADS  Article  Google Scholar 

  13. 13.

    Uys, H., Meystre, P.: Quantum states for Heisenberg-limited interferometry. Phys. Rev. A 76, 013804 (2007)

    ADS  Article  Google Scholar 

  14. 14.

    Huver, S.D., Wildfeuer, C.F., Dowling, J.P.: Entangled fock states for robust quantum optical metrology, imaging, and sensing. Phys. Rev. A 78, 063828 (2008)

    ADS  Article  Google Scholar 

  15. 15.

    Hyllus, P., Gühne, O., Smerzi, A.: Not all pure entangled states are useful for sub-shot-noise interferometry. Phys. Rev. A 82, 012337 (2010)

    ADS  Article  Google Scholar 

  16. 16.

    Jiang, K., Brignac, C.J., Weng, Y., Kim, M.B., Lee, H., Dowling, J.P.: Strategies for choosing path-entangled number states for optimal robust quantum-optical metrology in the presence of loss. Phys. Rev. A 86, 013826 (2012)

    ADS  Article  Google Scholar 

  17. 17.

    Bhaskar, R.B., Jiang, K., Dowling, J.P.: Effectsof phase fluctuations on phase sensitivity and visibility of path-entangled photon fock states. Phys. Rev. A 88, 023857 (2013)

    ADS  Article  Google Scholar 

  18. 18.

    Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195 (1964)

    Google Scholar 

  20. 20.

    Genovese, M.: Research on hidden variable theories: a review of recent progresses. Phys. Rep. 413, 319 (2005)

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    Gisin, N.: Bell’s inequality holds for all non-product states. Phys. Lett. A 154(5–6), 201–202 (1991)

    ADS  MathSciNet  Article  Google Scholar 

  22. 22.

    Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)

    ADS  Article  Google Scholar 

  23. 23.

    Yu, S., Chen, Q., Zhang, C., Lai, C.H., Oh, C.H.: All entangled pure states violate a single bell’s inequality. Phys. Rev. Lett. 109, 120402 (2012)

    ADS  Article  Google Scholar 

  24. 24.

    Gilchrist, A., Deuar, P., Reid, M.D.: Contradiction of quantum mechanics with local hidden variables for quadrature phase amplitude measurements. Phys. Rev. Lett. 80, 3169–3172 (1998)

    ADS  Article  Google Scholar 

  25. 25.

    Munro, W.J.: Optimal states for bell-inequality violations using quadrature-phase homodyne measurements. Phys. Rev. A 59, 4197–4201 (1999)

    ADS  Article  Google Scholar 

  26. 26.

    Clauser, J.F., Horne, M.A.: Experimental consequences of objective local theories. Phys. Rev. D 10, 526–535 (1974)

    ADS  Article  Google Scholar 

  27. 27.

    Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)

    ADS  Article  Google Scholar 

  28. 28.

    Banaszek, K., Wódkiewicz, K.: Testing quantum nonlocality in phase space. Phys. Rev. Lett. 82, 2009–2013 (1999)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Wildfeuer, C.F., Lund, A.P., Dowling, J.P.: Strong violations of bell-type inequalities for path-entangled number states. Phys. Rev. A 76, 052101 (2007)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  30. 30.

    Gerry, C.C., Mimih, J., Benmoussa, A.: Maximally entangled coherent states and strong violations of bell-type inequalities. Phys. Rev. A 80, 022111 (2009)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  31. 31.

    Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    ADS  Article  Google Scholar 

  32. 32.

    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  33. 33.

    Cirel’son, B.S.: Quantum generalizations of bell’s inequality. Lett. Math. Phys. 4(2), 93–100 (1980)

    ADS  MathSciNet  Article  Google Scholar 

  34. 34.

    Gisin, N., Peres, A.: Maximal violation of bell’s inequality for arbitrarily large spin. Phys. Lett. A 162(1), 15–17 (1992)

    ADS  MathSciNet  Article  Google Scholar 

  35. 35.

    Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72(22), 3439–3443 (1994)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  36. 36.

    Braunstein, S.L., Caves, C.M., Milburn, G.J.: Generalized uncertainty relations: theory, examples, and Lorentz invariance. Ann. Phys. 247, 135 (1996)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  37. 37.

    Gerry, C.C., Mimih, J.: The parity operator in quantum optical metrology. Contemp. Phys. 51(6), 497–511 (2010)

    ADS  Article  Google Scholar 

  38. 38.

    Arfken, G., Weber, H.: Mathematical Methods for Physicists, Chap. 13, 3rd edn. Academic Press, London (1985)

    Google Scholar 

  39. 39.

    de Oliveira, F.A.M., Kim, M.S., Knight, P.L., Buzek, V.: Properties of displaced number states. Phys. Rev. A 41, 2645–2652 (1990)

    ADS  Article  Google Scholar 

  40. 40.

    Wunsche, A.: Displaced fock states and their connection to quasiprobabilities. Quantum Opt. 3, 359–383 (1991)

    ADS  MathSciNet  Article  Google Scholar 

Download references


J. P. D. and K. P. S. would like to acknowledge support from the Air Force Office of Scientific Research, the Army Research Office, the Defense Advanced Research Projects Agency, and the National Science Foundation. C. F. W. would like to add the following acknowledgment: I first met Howard at QCMC 2002 in Boston. He told me that as part of his formal education he went to the south of Germany and attended High School for a couple of years. He enjoyed chatting in German with me. Howard also introduced me to Jonathan P. Dowling at this conference who later hired me as a post doc. I met Howard several times at various international conferences over the past years. He always gave me advice on career moves and research topics, even in the weeks before his surgery. His encouragement and generosity made a deep impression on me, and I will never forget this extraordinary researcher and warm welcoming personality.

Author information



Corresponding author

Correspondence to Christoph F. Wildfeuer.


Appendix 1

Let \(\rho \) be the density operator corresponding to the \((N-m)::m\) state of Eq. (1), i.e.,

$$\begin{aligned} \rho&=| (N-m)::m\rangle \langle (N-m)::m|\nonumber \\&=\frac{1}{2}\bigg [|N-m,m\rangle \langle N-m,m|+|m,N-m\rangle \langle m,N-m|\nonumber \\&\quad + \mathrm{e}^{-i(N-2m) \phi }|N-m,m\rangle \langle m,N-m|+\mathrm{e}^{i(N-2m) \phi }|m,N-m\rangle \langle N-m,m|\bigg ]. \end{aligned}$$

The logarithmic negativity \(\mathcal {\varepsilon }\) of the state can be calculated using the absolute sum of the negative eigenvalues \(\mathcal {N}=|\sum _{i}\lambda _i|\), \(\lambda _i < 0\) of the partial transpose of the density operator \(\rho ^{PT}\), as \(\mathcal {\varepsilon }=\log {(1+2\mathcal {N})}\). The partial transpose of \(\rho \) of Eq. (22) is given by

$$\begin{aligned} \rho ^{PT}&=| (N-m)::m\rangle \langle (N-m)::m|\nonumber \\&=\frac{1}{2}\bigg [|N-m,m\rangle \langle N-m,m|+|m,N-m\rangle \langle m,N-m|\nonumber \\&\quad + \mathrm{e}^{-i(N-2m) \phi }|N-m,N-m\rangle \langle m,m|+\mathrm{e}^{i(N-2m) \phi }|m,m\rangle \langle N-m,N-m|\bigg ]. \end{aligned}$$

Diagonalizing the off-diagonal terms, \(\rho ^{PT}\) of Eq. (23) can be equivalently written as

$$\begin{aligned} \rho&=| (N-m):{:}m\rangle \langle (N-m)::m|\nonumber \\&=\frac{1}{2}\bigg [|N-m,m\rangle \langle N-m,m|+|m,N-m\rangle \langle m,N-m|+|\varphi _1\rangle \langle \varphi _1|-|\varphi _2\rangle \langle \varphi _2|\bigg ], \end{aligned}$$

where \(|\varphi _1\rangle \) and \(|\varphi _2\rangle \) are normalized two-mode states given by

$$\begin{aligned} |\varphi _1\rangle =\frac{1}{\sqrt{2}}\left( \mathrm{e}^{-i (N-m) \phi }|N-m,N-m\rangle +\mathrm{e}^{-i m \phi }|m,m\rangle \right) ,\nonumber \\ |\varphi _2\rangle =\frac{1}{\sqrt{2}}\left( \mathrm{e}^{-i (N-m) \phi }|N-m,N-m\rangle -\mathrm{e}^{-i m\phi }|m,m\rangle \right) . \end{aligned}$$

The eigenvalues of \(\rho ^{PT}\) are \(\{1/2,\ 1/2,\ 1/2,\ -1/2\}\). We notice that they are independent of the values of N and m. Thus, the logarithmic negativity of all \((N-m)::m\) states is \(\log 2\).

Appendix 2

The correlation function \(\Pi (\alpha , \beta )\) of Eq. (16), for an \((N-m)::m\) state of Eq. (1), is given by

$$\begin{aligned}&\langle (N-m)::m|\hat{\Pi }(\alpha )\otimes \hat{\Pi }(\beta )|(N-m)::m\rangle \nonumber \\&\quad =\frac{1}{2}\bigg [\langle N-m|\hat{D}(\alpha )(-1)^{\hat{n}_a} \hat{D}(-\alpha )|N-m\rangle \langle m|\hat{D}(\beta )(-1)^{\hat{n}_b} \hat{D}(-\beta )|m\rangle \nonumber \\&\qquad +\langle m|\hat{D}(\alpha )(-1)^{\hat{n}_a} \hat{D}(-\alpha )|m\rangle \langle N-m |\hat{D}(\beta )(-1)^{\hat{n}_b} \hat{D}(-\beta )|N-m\rangle \nonumber \\&\qquad +\{\mathrm{exp}(i(N-2m)\phi )\langle N-m|\hat{D}(\alpha )(-1)^{\hat{n}_a} \hat{D}(-\alpha )|m\rangle \nonumber \\&\qquad \times \langle m |\hat{D}(\beta )(-1)^{\hat{n}_b} \hat{D}(-\beta )|N-m\rangle +\mathrm{c.c.}\}\bigg ], \end{aligned}$$

where we have used the fact that \(\hat{D}(\alpha )^{\dagger }=\hat{D}(-\alpha )\). Denoting displaced Fock states by \(\hat{D}(\alpha )|n\rangle =|\alpha ,n\rangle \), Eq. (26) can be rewritten as

$$\begin{aligned}&\langle (N-m)::m|\hat{\Pi }(\alpha )\otimes \hat{\Pi }(\beta )|(N-m)::m\rangle \nonumber \\&\quad =\frac{1}{2}\bigg [\langle -\alpha ,N-m|(-1)^{\hat{n}_a}|-\alpha ,N-m\rangle \langle -\beta , m|(-1)^{\hat{n}_b}|-\beta ,m\rangle \nonumber \\&\qquad +\,\langle -\alpha ,m|(-1)^{\hat{n}_a}|-\alpha ,m\rangle \langle -\beta , N-m|(-1)^{\hat{n}_b}|-\beta ,N-m\rangle \nonumber \\&\qquad +\,2{Re}\{\mathrm{exp}(i(N-2m)\phi )\langle -\alpha ,N-m|(-1)^{\hat{n}_a}|-\alpha ,m\rangle \langle -\beta , m|(-1)^{\hat{n}_b}|-\beta ,N-m\rangle \}\bigg ]. \end{aligned}$$

Using the number basis expansion of states of the form \(|\alpha ,n\rangle \) as given in Ref. [39], one can show that

$$\begin{aligned} (-1)^{\hat{n}}|\alpha ,N-m\rangle =(-1)^{n}|-\alpha ,n\rangle . \end{aligned}$$

Therefore, Eq. (27) can be written as:

$$\begin{aligned}&\langle (N-m)::m|\hat{\Pi }(\alpha )\otimes \hat{\Pi }(\beta )|(N-m)::m\rangle \nonumber \\&\quad =\frac{(-1)^{N}}{2}\bigg [\langle -\alpha ,N-m|\alpha ,N-m\rangle \langle -\beta , m|\beta ,m\rangle \nonumber \\&\qquad +\,\langle -\alpha ,m|\alpha ,m\rangle \langle -\beta , N-m|\beta ,N-m\rangle \nonumber \\&\qquad +\,2{Re}\{\mathrm{exp}(i(N-2m)\phi )\langle -\alpha ,N-m|\alpha ,m\rangle \langle -\beta , m|\beta ,N-m\rangle \}\bigg ]. \end{aligned}$$

The inner product of displaced Fock states is given by [23, 40]

$$\begin{aligned} \langle -\alpha ,N-m|\alpha ,m\rangle =\mathrm{exp}(-2|\alpha |^2)&\sqrt{\frac{m!}{(N-m)!}}(2\alpha )^{N-2m}L_{N-m}^{N-2m}(4|\alpha |^2). \end{aligned}$$

Using Eq. (30) in Eq. (29), the correlation function \(\Pi (\alpha , \beta )\) for the \((N-m)::m\) state is found to be of the form given in Eq. (17). Further, the two-mode Wigner function of the state can be written as

$$\begin{aligned} W(\alpha ,\beta )=\frac{4}{\pi ^2}\Pi (\alpha ,\beta ). \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seshadreesan, K.P., Wildfeuer, C.F., Kim, M.B. et al. On the connection between quantum nonlocality and phase sensitivity of two-mode entangled Fock state superpositions. Quantum Inf Process 15, 1025–1042 (2016).

Download citation


  • Quantum information
  • Quantum entanglement
  • Bell tests