Skip to main content
Log in

Nonclassical Properties of a Hybrid NAAN Quantum State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We introduce a two-mode hybrid entangled state (NAAN) which is constructed by two n-photon Fock states and two coherent states with an arbitrary relative phase. We show that the NAAN can be considered as the superpositions of NOON states when \(\alpha \ne 0\). In the special case, when \(\alpha = 0\), the NAAN degenerates to the general NOON. The most interesting nonclassical properties of this state are its strong violations of the CHSH inequality. In addition, we show explicitly some typical nonclassical properties of the NAAN state, such as entanglement, sub-Poissonian distribution, phase fluctuation and squeezing. These findings suggest that the even NAAN states exhibit a high degree of entanglement, while the odd NAAN states have a distinct sub-Poissonian distribution and the optimal phase sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. van Enk, S.J. , Hirota, O. :Entangled coherent states: Teleportation and decoherence. Phys Rev A 64(2), 022313–1–6 (2001)

  2. Dodonov, V.V.: “Nonclassical” states in quantum optics: a “squeezed” review of the first 75 years. J Opt B-Quantum S O 4(1), R1–R33 (2002)

    Article  MathSciNet  Google Scholar 

  3. Mojaveri, B., Dehghani, A., JafarzadehBahrbeig, R.: Enhancing entanglement of entangled coherent states via a f-deformed photon-addition operation. Eur Phys J Plus 134(9), 456-1–8 (2019)

    Article  Google Scholar 

  4. Liu, C., Yu, M., Ye, W., Zhang, H., Hu, L.: Preparation of nonclassical states by displacement-based quantum scissors. Results Phys 19, 103616-1–6 (2020)

    Article  Google Scholar 

  5. Matia-Hernando, P., Luis, A.: Nonclassicality in phase-number uncertainty relations. Phys Rev A 84(6), 063829-1–7 (2011)

    Article  ADS  Google Scholar 

  6. Dehghani, A., Mojaveri, B., Alenabi, A.A.: Entangled nonlinear coherent-squeezed states: inhibition of depolarization and disentanglement. Appl Phys B 128(2), 23-1–10 (2022)

    Article  ADS  Google Scholar 

  7. Anbaraki, A., Afshar, D., Jafarpour, M.: Non-classical properties and polarization degree of photon-added entangled nonlinear coherent states. Eur Phys J Plus 133(1), 2-1–11 (2018)

    Article  Google Scholar 

  8. Dehghani, A., Mojaveri, B., Aryaie, M.: Nonclassical properties and polarization degree of photon-subtracted entangled nonlinear coherent states. Int J Mod Phys B 33(21), 1950230 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bose, S., Kumar, M.S.: Analysis of necessary and sufficient conditions for quantum teleportation with non-Gaussian resources. Phys Rev A 103(3), 032432-1–5 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  10. Mojaveri, B., Dehghani, A., JafarzadehBahrbeig, R.: Nonlinear coherent states of the para-Bose oscillator and their non-classical features. Eur Phys J Plus 133(12), 529-1–16 (2018)

    Article  Google Scholar 

  11. Mojaveri, B., Dehghani, A., Faseghandis, S.A.: Even and odd λ -deformed binomial states: minimum uncertainty states. Eur Phys J Plus 132(3), 128-1–9 (2017)

    Article  Google Scholar 

  12. Dai, Q., Jing, H.: Photon-Added Entangled Coherent State. Int J Theor Phys 47(10), 2716–2721 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lee, S.Y., Park, J., Lee, H.W., Nha, H.: Generating arbitrary photon-number entangled states for continuous-variable quantum informatics. Opt Express 20(13), 14221–14233 (2012)

    Article  ADS  Google Scholar 

  14. Gomez, E.S., Nogueira, W.A.T., Monken, C.H., Lima, G.: Quantifying the non-Gaussianity of the state of spatially correlated down-converted photons. Opt Express 20(4), 3753–3772 (2012)

    Article  ADS  Google Scholar 

  15. Lee, J., Kim, J., Nha, H.: Demonstrating higher-order nonclassical effects by photon-added classical states: realistic schemes. J Opt Soc Am B 26(7), 1363–1369 (2009)

    Article  ADS  Google Scholar 

  16. Ben-Aryeh, Y.: Phase estimation by photon counting measurements in the output of a linear Mach-Zehnder interferometer. J Opt Soc Am B 29(10), 2754–2764 (2012)

    Article  ADS  Google Scholar 

  17. Sivakumar, S.: Photon-added coherent states in parametric down-conversion. Phys Rev A 83(3), 035802-1–4 (2011)

    Article  ADS  Google Scholar 

  18. Takeda, S., Benichi, H., Mizuta, T., Lee, N., Yoshikawa, J., Furusawa, A.: Quantum mode filtering of non-Gaussian states for teleportation-based quantum information processing. Phys Rev A 85(5), 053824-1–7 (2012)

    Article  ADS  Google Scholar 

  19. Solano, E., Agarwal, G.S., Walther, H.: Generalized Schrodinger cat states in cavity QED. Opt. Spectrosc. 94(5), 805–807 (2003)

    Article  ADS  Google Scholar 

  20. Xiang, S.-H., Song, K.-H.: Quantum non-Gaussianity of single-mode Schrödinger cat states based on Kurtosis. Eur Phys J D 69(11), 260-1–9 (2015)

    Article  ADS  Google Scholar 

  21. Filip, R.: Gaussian quantum adaptation of non-Gaussian states for a lossy channel. Phys Rev A 87(4), 042308-1–6 (2013)

    Article  ADS  Google Scholar 

  22. Joo, J., Elliott, M., Oi, D.K.L., Ginossar, E., Spiller, T.P.: Deterministic amplification of Schrödinger cat states in circuit quantum electrodynamics. New J Phys 18(2), 023028-1–10 (2016)

    Article  Google Scholar 

  23. Dehghani, A., Mojaveri, B., Aryaie, M., Alenabi, A.A.: Superposition of two-mode “Near” coherent states: non-classicality and entanglement. Quantum Inf Process 18(5), 148-1–6 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Karimi, A., Tavassoly, M.K.: Single-mode nonlinear excited entangled coherent states and their nonclassical properties. Phys Scripta 90(1), 015101-1–14 (2015)

    Article  ADS  Google Scholar 

  25. Lee, C.W., Ji, S.W., Nha, H.: Quantum steering for continuous-variable states. J Opt Soc Am B 30(9), 2483–2490 (2013)

    Article  ADS  Google Scholar 

  26. Dowling, P.: Quantum optical metrology - the lowdown on high-NOON states. Contemp. Phys. 49(2), 125–143 (2008)

    Article  ADS  Google Scholar 

  27. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-Enhanced Measurements: Beating the Standard Quantum Limit. Science 306(5700), 1330–1336 (2004)

    Article  ADS  Google Scholar 

  28. Xu, X.X., Yuan, H.C.: Quantum phase estimation with local amplified 1001 state based on Wigner-function method. Quantum Inf Process 14(1), 411–424 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Kim, H., Park, H.S., Choi, S.K.: Three-photon NOON states generated by photon subtraction from double photon pairs. Opt Express 17(22), 19720–19726 (2009)

    Article  ADS  Google Scholar 

  30. Boto, A.N., Kok, P., Abrams, D.S., Braunstein, S.L., Williams, C.P., Dowling, J.P.: Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit. Phys Rev Lett 85(13), 2733–2736 (2000)

    Article  ADS  Google Scholar 

  31. Gilbert, G., Hamrick, M., Weinstein, Y.S.: Use of maximally entangled N-photon states for practical quantum interferometry. J Opt Soc Am B 25(8), 1336–1340 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  32. Mirza, I.M., Cruz, A.S.: On the dissipative dynamics of entangled states in coupled-cavity quantum electrodynamics arrays. J Opt Soc Am B 39(1), 177–187 (2022)

    Article  ADS  Google Scholar 

  33. Afek, I., Ambar, O., Silberberg, Y.: High-NOON States by Mixing Quantum and Classical Light. Science 328(5980), 879–881 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Li, Y., Jing, H., Zhan, M.S.: Optical generation of a hybrid entangled state via an entangling single-photon-added coherent state. J Phys B-at Mol Opt 39(9), 2107–2113 (2006)

    Article  ADS  Google Scholar 

  35. Nagali, E., Sciarrino, F.: Generation of hybrid polarization-orbital angular momentum entangled states. Opt Express 18(17), 18243–18248 (2010)

    Article  ADS  Google Scholar 

  36. Shukla, C., Malpani, P., Thapliyal, K.: Hierarchical Quantum Network using Hybrid Entanglement. Quantum Inf Process 20(3), 121-1–19 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Kreis, K., van Loock, P.: Classifying, quantifying, and witnessing qudit-qumode hybrid entanglement. Phys Rev A 85(3), 032307-1–14 (2012)

    Article  ADS  Google Scholar 

  38. dSouza, A.D., Cardoso, W.B., Avelar, A.T., Baseia, B.: Teleportation of entangled states without Bell-state measurement via a two-photon process. Opt Commun 284(4), 1086–1089 (2011)

    Article  ADS  Google Scholar 

  39. Jennewein, T., Weihs, G., Zeilinger, A.: Photon Statistics and Quantum Teleportation Experiments. J Phys Soc Jpn 72, 168–173 (2003)

    Article  ADS  Google Scholar 

  40. Gaspard, P.: Entropy production in the quantum measurement of continuous observables. Phys Lett A 377(3–4), 181–184 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Cardy, J.L.: Entanglement entropy in extended quantum systems. Eur Phys J B 64(3–4), 321–326 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  42. Gillet, J., Bastin, T., Agarwal, G.S.: Multipartite entanglement criterion from uncertainty relations. Phys Rev A 78(5), 052317-1–5 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  43. McKinstrie, C.J., Karlsson, M.: Schmidt decompositions of parametric processes I: Basic theory and simple examples. Opt Express 21(2), 1374–1394 (2013)

    Article  ADS  Google Scholar 

  44. Gerry, C.C., Mimih, J., Benmoussa, A.: Maximally entangled coherent states and strong violations of Bell-type inequalities. Phys Rev A 80(2), 022111-1–11 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Eberhard, P.H., Rosselet, P.: Bells theorem based on a generalized EPR criterion of reality. Found. Phys. 25(1), 91–111 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Cavalcanti, E.G., Jones, S.J., Wiseman, H.M., Reid, M.D.: Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox. Phys Rev A 80(3), 032112-1–16 (2009)

    Article  ADS  Google Scholar 

  47. Mandel, L.: Squeezed States and Sub-Poissonian Photon Statistics. Phys Rev Lett 49(2), 136–138 (1982)

    Article  ADS  Google Scholar 

  48. Ferrie, C.: Quasi-probability representations of quantum theory with applications to quantum information science. Rep Prog Phys 74(11), 116001-1–24 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  49. Veitch, V., Ferrie, C., Gross, D., Emerson, J.: Negative quasi-probability as a resource for quantum computation. New J Phys 14, 113011-1–21 (2012)

    Article  MATH  Google Scholar 

  50. Sponar, S., Klepp, J., Zeiner, C., Badurek, G., Hasegawa, Y.: Violation of a Bell-like inequality for spin-energy entanglement in neutron polarimetry. Phys Lett A 374(3), 431–434 (2010)

    Article  ADS  Google Scholar 

  51. Chiruvelli, A., Lee, H.: Parity measurements in quantum optical metrology. J Mod Optic 58(11), 945–953 (2011)

    Article  ADS  Google Scholar 

  52. Seshadreesan, K.P., Kim, S., Dowling, J.P., Lee, H.: Phase estimation at the quantum Cramér-Rao bound via parity detection. Phys Rev A 87(4), 043833-1–6 (2013)

    Article  ADS  Google Scholar 

  53. Hu, L.Y., Wei, C.P., Huang, J.H., Liu, C.J.: Quantum metrology with Fock and even coherent states: Parity detection approaches to the Heisenberg limit. Opt Commun 323, 68–76 (2014)

    Article  ADS  Google Scholar 

  54. Liu, C.-C., Wang, D., Sun, W.-Y., Ye, L.: Quantum Fisher information, quantum entanglement and correlation close to quantum critical phenomena. Quantum Inf Process 16(9), 219-1–15 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Ren, Z.H., Li, Y., Li, Y.N., Li, W.D.: Development on quantum metrology with quantum Fisher information. Acta Phys Sin-Ch Ed 68(4), 040601-1–30 (2019)

    Google Scholar 

  56. Missori, R.J., de Oliveira, M.C., Furuya, K.: Non-Gaussian two-mode squeezing and continuous-variable entanglement of linearly and circularly polarized light beams interacting with cold atoms. Phys Rev A 79(2), 023801-1–9 (2009)

    Article  ADS  Google Scholar 

  57. Liao, J.Q., Law, C.K.: Parametric generation of quadrature squeezing of mirrors in cavity optomechanics. Phys Rev A 83(3), 033820-1–4 (2011)

    Article  ADS  Google Scholar 

  58. Truong, D.M., Nguyen, H.T.X., Nguyen, A.B.: Sum Squeezing, Difference Squeezing, Higher-Order Antibunching and Entanglement of Two-Mode Photon-Added Displaced Squeezed States. Int J Theor Phys 53(3), 899–910 (2014)

    Article  MATH  Google Scholar 

  59. Hofmann, H.F., Ono, T.: High-photon-number path entanglement in the interference of spontaneously down-converted photon pairs with coherent laser light. Phys Rev A 76(3), 031806-1–4 (2007)

    Article  ADS  Google Scholar 

Download references

Funding

This work is supported by the Natural Science Foundation of the Anhui Higher Education Institutions of China (Grant No. 2022AH051580) and the University Synergy Innovation Program of Anhui Province (Grant No. GXXT-2022–050).

Author information

Authors and Affiliations

Authors

Contributions

Gang Ren and Haijun Yu wrote the main manuscript text and Chun-zao Zhang and Feng Chen prepared figures 1-9. All authors reviewed the manuscript.

Corresponding author

Correspondence to Gang Ren.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. Derivation of expectation values in Eq. (16)

Using Eq. (1), the average value of the \(a_{1}^{\dag } a_{1}\) is

$$\begin{gathered} \left\langle {a_{1}^{\dag } a_{1} } \right\rangle = N_{c}^{ - 1} \left( {\left\langle {N_{2} } \right|\left\langle {\alpha_{1} } \right|e^{ - i\varphi } + \left\langle {\alpha_{2} } \right|\left\langle {N_{1} } \right|} \right)a_{1}^{\dag } a_{1} \left( {\left| {N_{1} } \right\rangle \left| {\alpha_{2} } \right\rangle + e^{i\varphi } \left| {\alpha_{1} } \right\rangle \left| {N_{2} } \right\rangle } \right) \hfill \\ = N_{c}^{ - 1} (\left\langle {\alpha_{2} } \right|\left. {\alpha_{2} } \right\rangle \left\langle {N_{1} } \right|a_{1}^{\dag } a_{1} \left| {N_{1} } \right\rangle + \left\langle {N_{2} } \right|\left. {N_{2} } \right\rangle \left\langle {\alpha_{1} } \right|a_{1}^{\dag } a_{1} \left| {\alpha_{1} } \right\rangle \hfill \\ + e^{i\varphi } \left\langle {\alpha_{2} } \right|\left. {N_{2} } \right\rangle \left\langle {N_{1} } \right|a_{1}^{\dag } a_{1} \left| {\alpha_{1} } \right\rangle + e^{ - i\varphi } \left\langle {N_{2} } \right|\left. {\alpha_{2} } \right\rangle \left\langle {\alpha_{1} } \right|a_{1}^{\dag } a_{1} \left| {N_{1} } \right\rangle ). \hfill \\ \end{gathered}$$
(A1)

According \(a\left| \alpha \right\rangle = \alpha \left| \alpha \right\rangle ,a^{\dag } a\left| n \right\rangle = n\left| n \right\rangle\) and \(\left\langle \alpha \right.\left| n \right\rangle = \frac{{\alpha^{ * n} }}{{\sqrt {n!} }}e^{{ - \frac{1}{2}\left| \alpha \right|^{2} }}\), we have

$$\left\langle {a_{1}^{\dag } a_{1} } \right\rangle = N_{c}^{ - 1} \left( {\frac{2}{{\left( {n - 1} \right)!}}\left| \alpha \right|^{2} e^{{ - \left| \alpha \right|^{2} }} \cos \varphi + \left| \alpha \right|^{2} + n} \right).$$
(A2)

In a similar way, one readily obtain the average values of \(a_{2}^{\dag } a_{2} ,a_{1} a_{2} ,a_{1}\) and \(a_{2}\) as shown in Eq. (16).

Appendix 2. Derivation of Wigner function in Eq. (22)

We first calculate the inner product part of the Wigner function as

$$\begin{gathered} \left\langle { - z_{1} , - z_{2} } \right|\rho \left| {z_{1} ,z_{2} } \right\rangle \hfill \\ = N_{c}^{ - 1} \left\langle { - z_{1} , - z_{2} } \right|\left( {\left| {N_{1} } \right\rangle \left| {\alpha_{2} } \right\rangle + e^{{i^{\varphi } }} \left| {\alpha_{1} } \right\rangle \left| {N_{2} } \right\rangle } \right) \hfill \\ \left( {\left\langle {N_{2} } \right|\left\langle {\alpha_{1} } \right|e^{ - i\varphi } + \left\langle {\alpha_{2} } \right|\left\langle {N_{1} } \right|} \right)\left| {z_{1} ,z_{2} } \right\rangle \hfill \\ = N_{c}^{ - 1} \frac{1}{n!}\left( { - 1} \right)^{n} \left[ {z_{1}^{ * n} z_{1}^{n} e^{{ - \left| {z_{1} } \right|^{2} - \left| {z_{2} } \right|^{2} - \alpha z_{2}^{ * } + \alpha^{ * } z_{2} }} + z_{2}^{ * n} z_{2}^{n} e^{{ - \left| {z_{1} } \right|^{2} - \left| {z_{2} } \right|^{2} - z_{1}^{ * } \alpha + \alpha^{ * } z_{1} }} } \right. \hfill \\ \left. { + e^{{i^{\varphi } }} z_{1}^{n} z_{2}^{ * n} e^{{ - \left| {z_{1} } \right|^{2} - \left| {z_{2} } \right|^{2} - \alpha z_{1}^{ * } + \alpha z_{2}^{ * } }} + e^{ - i\varphi } \left( {z_{1}^{ * } } \right)^{n} z_{2}^{n} e^{{ - \left| {z_{1} } \right|^{2} - \left| {z_{2} } \right|^{2} + \alpha^{ * } z_{1} - \alpha z_{2}^{ * } }} } \right], \hfill \\ \end{gathered}$$
(B1)

where the overlap between two coherent states \(\left\langle \alpha \right|\left. \beta \right\rangle = \exp \left[ { - \frac{1}{2}\left( {\left| \alpha \right|^{2} + \left| \beta \right|^{2} } \right) + \alpha^{ * } \beta } \right]\) has been used.

Using the definition of the Wigner function in Eq. (20), the first integral term is obtained as

$$\begin{gathered} F_{1}^{^{\prime}} = \frac{{\left( { - 1} \right)^{n} }}{n!}\frac{{2e^{{2\left( {\left| {\gamma_{1} } \right|^{2} + \left| {\gamma_{2} } \right|^{2} } \right)}} }}{{\pi^{2} }}N_{c}^{ - 1} \int \frac{{d^{2} z_{1} d^{2} z_{2} }}{{\pi^{2} }}z_{1}^{ * n} z_{1}^{n} e^{{ - \alpha z_{2}^{ * } + \alpha^{ * } z_{2} }} e^{{ - \left| {z_{1} } \right|^{2} - \left| {z_{2} } \right|^{2} }} \hfill \\ .\exp \left[ {2\left( {z_{1}^{ * } \gamma_{1} - z_{1} \gamma_{1}^{ * } } \right) + 2\left( {z_{2}^{ * } \gamma_{2} - z_{2} \gamma_{2}^{ * } } \right)} \right] \hfill \\ = \frac{{\left( { - 1} \right)^{n} }}{n!}\frac{{2e^{{2\left( {\left| {\gamma_{1} } \right|^{2} + \left| {\gamma_{2} } \right|^{2} } \right)}} }}{{\pi^{2} }}N_{c}^{ - 1} \int \frac{{d^{2} z_{1} }}{\pi }z_{1}^{ * n} z_{1}^{n} \exp \left( { - \left| {z_{1} } \right|^{2} + 2z_{1}^{ * } \gamma_{1} - 2z_{1} \gamma_{1}^{ * } } \right) \hfill \\ .\int \frac{{d^{2} z_{2} }}{\pi }\exp \left[ { - \left| {z_{2} } \right|^{2} + \left( {2\gamma_{2} - \alpha } \right)z_{2}^{ * } + \left( {\alpha^{ * } - 2\gamma_{2}^{ * } } \right)z_{2} } \right] \hfill \\ = \frac{2}{{\pi^{2} }}e^{{ - 2\left( {\left| {\gamma_{1} } \right|^{2} + \left| {\gamma_{2} } \right|^{2} } \right)}} \left( { - 1} \right)^{n} N_{c}^{ - 1} L_{m} \left( { - 4\left| {\gamma_{1} } \right|^{2} } \right)\exp \left( {2\alpha \gamma_{2}^{ * } + 2\gamma_{2} \alpha^{ * } - \left| \alpha \right|^{2} } \right), \hfill \\ \end{gathered}$$
(B2)

where we have used the integral formula of complex function

$$\int \frac{{d^{2} z}}{\pi }z^{m} z^{ * m} \exp \left( { - \left| z \right|^{2} + \xi z + \eta z^{ * } } \right) = m!e^{\xi \eta } L_{m} \left( {\xi \eta } \right),$$
(B3)

and

$$\int \frac{{d^{2} z}}{\pi }\exp \left( {\zeta \left| z \right|^{2} + \xi z + \eta z^{ * } } \right) = - \frac{1}{\zeta }\exp \left( { - \frac{\xi \eta }{\zeta }} \right),\;Re\left( \xi \right) < 0.$$
(B4)

Similarly, using Eqs. (22) and (B1) and the integral formula

$$\begin{gathered} \int \frac{{d^{2} z}}{\pi }z^{n} \exp \left( { - \left| z \right|^{2} + \xi z + \eta z^{ * } } \right) = \eta^{n} e^{\xi \eta } , \hfill \\ \int \frac{{d^{2} z}}{\pi }z^{ * n} \exp \left( { - \left| z \right|^{2} + \xi z + \eta z^{ * } } \right) = \xi^{n} e^{\xi \eta } , \hfill \\ \end{gathered}$$
(B5)

we have

$$\begin{gathered} F_{2}^{^{\prime}} = e^{ - i\varphi } \frac{{\left( { - 1} \right)^{n} }}{n!}\frac{{2e^{{2\left( {\left| {\gamma_{1} } \right|^{2} + \left| {\gamma_{2} } \right|^{2} } \right)}} }}{{\pi^{2} }}N_{c}^{ - 1} \hfill \\ \int \frac{{d^{2} z_{1} d^{2} z_{2} }}{{\pi^{2} }}z_{1}^{ * n} z_{2}^{n} e^{{ - \left| {z_{1} } \right|^{2} - \left| {z_{2} } \right|^{2} - \alpha z_{2}^{ * } + \alpha^{ * } z_{1} }} \hfill \\ \exp \left[ {2\left( {z_{1}^{ * } \gamma_{1} - z_{1} \gamma_{1}^{ * } } \right) + 2\left( {z_{2}^{ * } \gamma_{2} - z_{2} \gamma_{2}^{ * } } \right)} \right] \hfill \\ = e^{ - i\varphi } \frac{{\left( { - 1} \right)^{n} }}{n!}\frac{{2e^{{ - 2\left( {\left| {\gamma_{1} } \right|^{2} + \left| {\gamma_{2} } \right|^{2} } \right)}} }}{{\pi^{2} }}N_{c}^{ - 1} \hfill \\ \left( {2\gamma_{2} - \alpha } \right)^{n} \left( {\alpha^{ * } - 2\gamma_{1}^{ * } } \right)^{n} \exp \left( {2\gamma_{1} \alpha + 2\alpha \gamma_{2}^{ * } } \right) \hfill \\ \end{gathered}$$
(B6)

and

$$\begin{gathered} F_{3}^{^{\prime}} = \frac{{\left( { - 1} \right)^{n} }}{n!}\frac{{2e^{{2\left( {\left| {\gamma_{1} } \right|^{2} + \left| {\gamma_{2} } \right|^{2} } \right)}} }}{{\pi^{2} }}N_{c}^{ - 1} \int \frac{{d^{2} z_{1} d^{2} z_{2} }}{{\pi^{2} }}z_{2}^{n} z_{2}^{ * n} e^{{ - \alpha z_{1}^{ * } }} e^{{\alpha^{ * } z_{1} }} \hfill \\ \exp \left[ {2\left( {z_{1}^{ * } \gamma_{1} - z_{1} \gamma_{1}^{ * } } \right) + 2\left( {z_{2}^{ * } \gamma_{2} - z_{2} \gamma_{2}^{ * } } \right)} \right] \hfill \\ = \frac{{\left( { - 1} \right)^{n} }}{n!}\frac{2}{{\pi^{2} }}e^{{ - 2\left( {\left| {\gamma_{1} } \right|^{2} + \left| {\gamma_{2} } \right|^{2} } \right)}} N_{c}^{ - 1} \hfill \\ n!L_{n} \left( {4\left| {\gamma_{2} } \right|} \right)^{2} \exp \left( {2\alpha \gamma_{1}^{ * } + 2\gamma_{1} \alpha^{ * } - \left| \alpha \right|^{2} } \right) \hfill \\ \end{gathered}$$
(B7)

Substituting Eqs.(B2),(B6) and (B7) into (20) and after some simplifications, Eq. (22) is obtained.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, G., Yu, Hj., Zhang, Cz. et al. Nonclassical Properties of a Hybrid NAAN Quantum State. Int J Theor Phys 62, 81 (2023). https://doi.org/10.1007/s10773-023-05346-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05346-4

Keywords

Navigation