Skip to main content
Log in

Realization of quantum gates based on three-dimensional harmonic oscillator in a time-varying electromagnetic field

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper presents the design of a given quantum unitary gate by perturbing a three-dimensional (3-D) quantum harmonic oscillator with a time-varying but spatially constant electromagnetic field. The idea is based on expressing the radiation- perturbed Hamiltonian as the sum of the unperturbed Hamiltonian and O(e) and \(O({e}^2)\) perturbations and then solving the Schrödinger equation to obtain the evolution operator at time T up to \(O({e}^2)\), and this is a linear-quadratic function of the perturbing electromagnetic field values over the time interval [0, T]. Setting the variational derivative of the error energy with respect to the electromagnetic field values with an average electromagnetic field energy constraint leads to the optimal electromagnetic field solution, a linear integral equation. The reliability of such a gate design procedure in the presence of heat bath coupling is analysed, and finally, an example illustrating how atoms and molecules can be approximated using oscillators is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proc. R. Soc. Lond. A 454, 339 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, pp. 171–286. Cambridge University Press, Cambridge (2001)

  3. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)

    Article  ADS  Google Scholar 

  4. DiVincenzo, D.P.: Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015 (1995)

    Article  ADS  Google Scholar 

  5. Hua, M., Tao, M.J., Deng, F.G.: Fast universal quantum gates on microwave photons with all resonance operations in circuit QED. Sci. Rep. 5, 9274 (2015)

    Article  ADS  Google Scholar 

  6. Wei, H.R., Deng, F.G.: Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities. Sci. Rep. 4, 7551 (2014)

    Article  ADS  Google Scholar 

  7. Wang, T.J., Wang, C.: Universal hybrid three-qubit quantum gates assisted by a nitrogen-vacancy center coupled with a whispering-gallery-mode microresonator. Phy. Rev. A 90, 052310 (2014)

    Article  ADS  Google Scholar 

  8. Xu, J.S., Li, C.F.: Quantum integrated circuit: classical characterization. Sci. Bull. 60, 141–141 (2015)

    Article  Google Scholar 

  9. Heilmann, R., Grafe, M., Nolte, S., Szameit, A.: A novel integrated quantum circuit for higher-order W-state generation and its highly precise characterization. Sci. Bull. 60, 96–100 (2015)

    Article  Google Scholar 

  10. Rfifi, S., EL Baz, M.: C-NOT three-hates performance by coherent cavity field and its optimized quantum applications. Quantum Inf. Process. 14, 67–81 (2015)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Altintas, A.A., Ozaydin, F., Yesilyurt, C., Bugs, S., Arik, M.: Constructing quantum logic gates using q-deformed harmonic oscillator algebras. Quantum Inf. Process. 13, 1035–1044 (2014)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995)

    MATH  Google Scholar 

  13. Levi, D., Moshinsky, M.: Relations between hyperspherical and harmonic-oscillator many-body matrix elements. Il Nuovo Cimento A 20(1), 107–114 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  14. Perelomov, A.M.: Generalized Coherent States and Their Applications Texts and Monographs in Physics. Springer, Berlin (1986)

    Book  Google Scholar 

  15. Glauber, R.J.: Coherent and incoherent states of radiation field. Phys. Rev. 131, 2766–2788 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  16. Klauder, J.R., Skagerstam, B.: Coherent States. World Scientific, Singapore (1985)

    Book  MATH  Google Scholar 

  17. Zhang, W., Feng, D., Gilmore, R.: Coherent states—theory and some applications. Rev. Modern Phys 62, 867–927 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  18. Gazeau, J.P.: Coherent States in Quantum Physics. Wiley-VCH, Berlin (2009)

    Book  Google Scholar 

  19. Combescure, M., Robert, D.: Coherent States and Applications in Mathematical Physics. Springer, New York (2012)

    Book  MATH  Google Scholar 

  20. Ali, S.T., Antoine, J.P., Bagarello, F., Gazeau, J.P.: Coherent states: a contemporary panorama. J. Phys. A Math. Theor. 45, 240301 (2012)

    Article  MathSciNet  Google Scholar 

  21. Galindo, A., Martin-Delgado, M.A.: Two-bit gates are universal for quantum computation. Rev. Mod. Phys. 74, 347 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Bohm, A., Uncu, H., Komy, S.: A brief survey of the mathematics of quantum physics. Rep. Math. Phys. 64(1–2), 5–32 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Dirac, P.A.M.: The Principles of Quantum Mechanics, 4th edn., pp. 108–178. Oxford University Press, New York (1958)

  24. Perelomov, A.M.: Superpositions of the \(SU(1, 1)\). Phys. Lett. A 193, 121–125 (1994)

    Article  MathSciNet  Google Scholar 

  25. Shepherd, D.J.: On the role of Hadamard gates in quantum circuits. Quantum Inf. Process. 5, 161–177 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kumar, P.: Direct implementation of an N-qubit controlled-unitary gate in a single step. Quantum Inf. Process. 12, 1201–1223 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Zhang, Y., Kauffman, L.H., Ge, M., Baxterizations, Y.: Universal quantum gates and Hamiltonians. Quantum Inf. Process. 4, 159–197 (2005)

  28. Altafini, C.: Parameter differentiation and quantum state decomposition for time varying Schrödinger equations. arXiv:quant-ph/0201034 (2002)

  29. Hirota, O.: Some remarks on a conditional unitary operator. Phys. Lett. A 155(6–7), 343–347 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  30. Fox, M.: Quantum Optics: An Introduction (Oxford Master Series in Physics, 6). Oxford University Press, New York (2005)

  31. Kamran, N., Olver, P.J.: Lie algebras of differential operators and Lie-algebraic potentials. J. Math. Anal. Appl. 145, 342–356 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  32. Bach, V.: Schrödinger operators. Encycl. Math. Phys. 1, 487–494 (2006)

  33. Altafini, C.: On the generation of sequential unitary gates from continuous time Schrödinger equations driven by external fields. Quantum Inf. Process. 1, 207–224 (2002)

    Article  MathSciNet  Google Scholar 

  34. Gardiner, C.W.: Quantum Noise, pp. 21–96. Springer, Berlin (1991)

  35. Bartlett, S.D., de Guise, H., Sanders, B.C.: Quantum encodings in spin systems and harmonic oscillators. Phys. Rev. A 65, 052316 (2002)

    Article  ADS  Google Scholar 

  36. Garcia-Ripoll, J.J., Zoller, P., Cirac, J.I.: Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing. Phys. Rev. Lett. 91, 157901 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumar Gautam.

Appendices

Appendix 1

The perturbed Hamiltonian for the system is given by

$$\begin{aligned} H(t)= \frac{(p+eA)^2+q^2}{2}-e\varPhi = \frac{p^2+q^2}{2}+ \frac{e}{2}\big ((p,A)+(A,p)\big )-e\varPhi + \frac{{e}^2A^2}{2} \end{aligned}$$
(34)

Since

$$\begin{aligned} (p,A)+(A,p)&=-2iA\cdot \nabla -i(\nabla \cdot A)\nonumber \\ (\nabla \cdot A)&=\frac{1}{2}\nabla \cdot (B(t)\times {r}) =-\frac{1}{2}B(t)\cdot (\nabla \times {r})=0, \end{aligned}$$
(35)

we get

$$\begin{aligned} H(t)&=H_0+eA\cdot p+\frac{{e}^2A^2}{2}-e\varPhi =H_0+e\left( \frac{1}{2}B(t)\times r\cdot p+E(t)\cdot r\right) \nonumber \\&\quad +\,\frac{{e}^2}{8}\left( B(t)\times r\right) ^2 \end{aligned}$$
(36)

Since

$$\begin{aligned} \left( B(t)\times r\right) ^2=B^2(t)q^2-(B(t),q)^2 \end{aligned}$$
(37)

and with \( L=r\times p \triangleq q\times p\), we obtain

$$\begin{aligned} H(t)=H_0+e\bigg (\frac{1}{2}B(t)\cdot L+E(t)\cdot q\bigg )+\frac{{e}^2}{8} \left( B^2(t)q^2-(B(t),q)^2\right) \end{aligned}$$
(38)

Appendix 2

Referring to Eq. (14)

$$\begin{aligned} W(t)&=I- ie\int _0^t\left( \frac{1}{2}B\big (t_1\big )\cdot L\big (t_1\big )+E\big (t_1\big )\cdot q\big (t_1\big )\right) {\text {d}}t_1\nonumber \\&\quad - i\frac{{e}^2}{8}\int _0^t\left( B\big (t_1\big )\times q\big (t_1\big )\right) ^2{\text {d}}t_1\nonumber \\&\quad -\,\nonumber {e}^2 \int _{0<t_2<t_1<t}\left( \frac{1}{2}B\big (t_1\big )\cdot L\big (t_1\big )+E\big (t_1\big )\cdot q\big (t_1\big ) \right) \nonumber \\&\quad \left( \frac{1}{2}B\big (t_2\big )\cdot L\big (t_2\big )+E\big (t_2\big )\cdot q\big (t_2\big )\right) {\text {d}}t_1{\text {d}}t_2+\,O\left( {e}^3\right) \end{aligned}$$
(39)

Denoting

$$\begin{aligned} \langle n_1n_2n_3|L_1(t)|m_1m_2m_3\rangle \triangleq \langle n|L_1(t)|m\rangle =\mathrm{e}^{itE(n,m)}\langle n|L_1|m\rangle \end{aligned}$$
(40)

where

$$\begin{aligned} E(n,m)=E(n)-E(m)=sum_{k=1}^3{(n_k-m_k)} \end{aligned}$$

To get general element for the angular momentum matrix, we have

$$\begin{aligned} \langle n|L_1|m\rangle =i\langle n|a_2a_3^\dag -a_2^\dag a_3|m\rangle \end{aligned}$$

and

$$\begin{aligned} a_3|m_1m_2m_3\rangle= & {} \sqrt{m}_3|m_1,m_2,m_3-1\rangle \\ \langle n_1n_2n_3|a_2^\dag= & {} \sqrt{n}_2\langle n_1,n_2-1,n_3|\\ \langle n|a_2^\dag a_3|m\rangle= & {} \sqrt{n_2m_3}\delta \big [n_1-m_1\big ]\delta \big [n_2-1-m_2\big ]\delta \big [n_3-m_3+1\big ]\\ \langle n|a_2a_3^\dag |m\rangle= & {} \langle n|a_3^\dag a_2|m\rangle =\sqrt{n_3m_2}\delta \big [n_1-m_1\big ]\delta \big [n_2-m_2+1\big ]\delta \big [n_3-1-m_3\big ] \end{aligned}$$

For the concise formulation of the equations, we define an operator \({\mathcal {Z}}^{-1}_k\), which acts on function \(f:{\mathbb {Z}}^3_+\rightarrow {\mathbb {R}}\) by the rule

$$\begin{aligned} {\mathcal {Z}}^{-1}_1 f\big (n_1n_2n_3\big )= & {} f\big (n_1-1,n_2,n_3\big )\\ {\mathcal {Z}}^{-1}_2 f\big (n_1n_2n_3\big )= & {} f\big (n_1,n_2-1,n_3\big )\\ {\mathcal {Z}}^{-1}_3 f\big (n_1n_2n_3\big )= & {} f\big (n_1,n_2,n_3-1\big ) \end{aligned}$$

Thus, we have

$$\begin{aligned} \langle n|L_1|m\rangle =-i\left( \sqrt{n_2m_3}{\mathcal {Z}}^{-1}_2{\mathcal {Z}}_3-\sqrt{n_3m_2}{\mathcal {Z}}_2{\mathcal {Z}}^{-1}_3\right) \delta [n-m] \end{aligned}$$

Likewise,

$$\begin{aligned} \langle n|L_2|m\rangle= & {} -i\left( \sqrt{n_3m_1}{\mathcal {Z}}^{-1}_3{\mathcal {Z}}_1-\sqrt{n_1m_3}{\mathcal {Z}}_3{\mathcal {Z}}^{-1}_1\right) \delta [n-m]\\ \langle n|L_3|m\rangle= & {} -i\left( \sqrt{n_1m_2}{\mathcal {Z}}^{-1}_1{\mathcal {Z}}_2-\sqrt{n_2m_1}{\mathcal {Z}}_1{\mathcal {Z}}^{-1}_2\right) \delta [n-m] \end{aligned}$$

The general expression can be written as

$$\begin{aligned} \langle n|L_k|m \rangle = -i\sum _{r,s} \epsilon ({\text {krs}}) \sqrt{n_rm_s}{\mathcal {Z}}^{-1}_r{\mathcal {Z}}_s \delta [n-m] \end{aligned}$$

We also need the matrix elements of \(B(t)\cdot L(t)\)

$$\begin{aligned} \langle n|B(t)\cdot L(t)|m\rangle&=-\iota \text {e}^{\iota tE(n-m)}\left\{ B_1(t)\left( \sqrt{n_2m_3}{\mathcal {Z}}^{-1}_2{\mathcal {Z}}_3-\sqrt{n_3m_2}{\mathcal {Z}}_2{\mathcal {Z}}^{-1}_3\right) \right. \nonumber \\&\quad +\, B_2(t)\left( \sqrt{n_3m_1}{\mathcal {Z}}^{-1}_3{\mathcal {Z}}_1-\sqrt{n_1m_3}{\mathcal {Z}}_3{\mathcal {Z}}^{-1}_1\right) \nonumber \\&\quad \left. +\, B_3(t)\left( \sqrt{n_1m_2}{\mathcal {Z}}^{-1}_1{\mathcal {Z}}_2-\sqrt{n_2m_1}{\mathcal {Z}}_1{\mathcal {Z}}^{-1}_2\right) \right\} \delta [n-m] \end{aligned}$$
(41)

To get the general matrix elements for position matrix, we have

$$\begin{aligned} \langle n|q_k(t)|m\rangle&= \mathrm{e}^{itE(n,m)}\langle n|q_k|m\rangle \nonumber \\ \langle n|q_1|m\rangle&=\langle n|\frac{\left( a_1+a_1^\dag \right) }{\sqrt{2}}|m\rangle =\left( \sqrt{\frac{m_1}{2}} {\mathcal {Z}}_1+ \sqrt{\frac{n_1}{2}}{\mathcal {Z}}^{-1}_1\right) \delta [n-m] \end{aligned}$$
(42)

and likewise for \(q_2\) and \(q_3\). The general expression comes out to be,

$$\begin{aligned} \langle n|q_k|m\rangle =\left( \sqrt{\frac{m_k}{2}}{\mathcal {Z}}_k+ \sqrt{\frac{n_k}{2}}{\mathcal {Z}}^{-1}_k\right) \delta [n-m],\quad k=1,2,3 \end{aligned}$$

We also need matrix elements of

$$\begin{aligned} \langle n|q_k(t)q_l(t)|m\rangle =\mathrm{e}^{itE(n,m)}\langle n|q_kq_l|m\rangle \end{aligned}$$

For \(k \ne l\),

$$\begin{aligned}&\langle n|q_kq_l|m\rangle =\langle n|\frac{\left( a_k+a_k^\dag \right) }{\sqrt{2}} \frac{\left( a_l+a_l^\dag \right) }{\sqrt{2}}|m \rangle =\frac{1}{2}\left\{ \langle n|a_ka_l +a_ka_l^\dag +a_k^\dag a_l + a_k^\dag a_l^\dag |m \rangle \right\} \nonumber \\&\quad =\frac{1}{2}\left\{ \sqrt{m_km_l}{\mathcal {Z}}_k{\mathcal {Z}}_l + \sqrt{m_kn_l}{\mathcal {Z}}_k{\mathcal {Z}}^{-1}_l +\sqrt{m_ln_k}{\mathcal {Z}}^{-1}_k{\mathcal {Z}}_l +\sqrt{n_kn_l}{\mathcal {Z}}^{-1}_k{\mathcal {Z}}^{-1}_l\right\} \delta [n-m] \end{aligned}$$

For \(k=l\), the required matrix elements is given by

$$\begin{aligned} \langle n|q_k^2|m\rangle&=\frac{1}{2}\langle n|\left( a_k+a_k^\dag \right) ^2|m\rangle =\frac{1}{2}\left\{ \langle n|a_k^2 +a_k^{\dag ^2} +a_ka_k^\dag +a_k^\dag a_k|m \rangle \right\} \\&=\frac{1}{2}\left\{ \sqrt{m_k(m_k-1)}{\mathcal {Z}}_k^2+ \sqrt{n_k(n_k-1)}{\mathcal {Z}}^{-2}_k+(2m_k+1)\right\} \delta [n-m] \end{aligned}$$

We redefine the Dyson series as follows,

$$\begin{aligned} W(t)=I+eW_1(t)+{e}^2W_2(t)+O\left( {e}^3\right) \end{aligned}$$

where

$$\begin{aligned} W_1(t)=-i\int _0^t\left( \frac{1}{2}B\big (t_1\big )\cdot L\big (t_1\big )+E\big (t_1\big )\cdot q\big (t_1\big )\right) {\text {d}}t_1 \end{aligned}$$

and

$$\begin{aligned} \langle n|W_1(t)|m \rangle&=-i\int _0^t\frac{1}{2}B\big (t_1\big )\cdot \langle n|L\big (t_1\big )|m \rangle {\text {d}}t_1 -i\int _0^t E\big (t_1\big )\cdot \langle n|q\big (t_1\big )|m \rangle {\text {d}}t_1\nonumber \\&=- \frac{i}{2}\int _0^t \mathrm{e}^{it_1E(n,m)t_1}\left\{ B_1(t)\left( \sqrt{n_2m_3} {\mathcal {Z}}^{-1}_2{\mathcal {Z}}_3-\sqrt{n_3m_2} {\mathcal {Z}}_2{\mathcal {Z}}^{-1}_3\right) \right. \nonumber \\&\quad +\,B_2(t)\left( \sqrt{n_3m_1}{\mathcal {Z}}^{-1}_3 {\mathcal {Z}}_1-\sqrt{n_1m_3}{\mathcal {Z}}_3 {\mathcal {Z}}^{-1}_1\right) \nonumber \\&\quad \left. +\,B_3(t)\left( \sqrt{n_1m_2}{\mathcal {Z}}^{-1}_1{\mathcal {Z}}_2- \sqrt{n_2m_1}{\mathcal {Z}}_1{\mathcal {Z}}^{-1}_2\right) \right\} \delta [n-m]{\text {d}}t_1\nonumber \\&\quad -\,i\int _0^t \mathrm{e}^{it_1E(n,m)_1}\left\{ E_1\big (t_1\big )\left( \sqrt{\frac{m_1}{2}}{\mathcal {Z}}_1+ \sqrt{\frac{n_1}{2}}{\mathcal {Z}}^{-1}_1\right) \right. \nonumber \\&\quad +\,E_2\big (t_1\big )\left( \sqrt{\frac{m_2}{2}}{\mathcal {Z}}_2+ \sqrt{\frac{n_2}{2}}{\mathcal {Z}}^{-1}_2\right) \nonumber \\&\quad \left. +\,E_3\big (t_1\big )\left( \sqrt{\frac{m_3}{2}}{\mathcal {Z}}_3+ \sqrt{\frac{n_3}{2}}{\mathcal {Z}}^{-1}_3\right) \right\} \delta [n-m]{\text {d}}t_1 \end{aligned}$$
(43)

or on equivalently, defining

$$\begin{aligned} \hat{B_k}(n,t)=\int _0^t B_k\big (t_1\big )\text {e}^{\iota n t_1}{\text {d}}t_1 \end{aligned}$$

and

$$\begin{aligned} \hat{E_k}(n,t)=\int _0^t E_k\big (t_1\big )\text {e}^{\iota n t_1}{\text {d}}t_1 \end{aligned}$$

We get

$$\begin{aligned} \langle n|W_1(t)|m \rangle&= -\frac{i}{2}\left\{ \hat{B_1}(n-m,t)\left( \sqrt{n_2m_3}{\mathcal {Z}}^{-1}_2{\mathcal {Z}}_3- \sqrt{n_3m_2}{\mathcal {Z}}_2{\mathcal {Z}}^{-1}_3\right) \right. \nonumber \\&\quad +\,\hat{B_2}(n-m,t)\left( \sqrt{n_3m_1}{\mathcal {Z}}^{-1}_3{\mathcal {Z}}_1- \sqrt{n_1m_3}{\mathcal {Z}}_3{\mathcal {Z}}^{-1}_1\right) \nonumber \\&\quad \left. +\,\hat{B_3}(n-m,t)\left( \sqrt{n_1m_2}{\mathcal {Z}}^{-1}_1{\mathcal {Z}}_2- \sqrt{n_2m_1}{\mathcal {Z}}_1{\mathcal {Z}}^{-1}_2\right) \right\} \delta [n-m]\nonumber \\&\quad -\,i\sum _{k=1}^3 \hat{E_k}(n-m,t)\left( \sqrt{\frac{m_k}{2}}{\mathcal {Z}}_k+ \sqrt{\frac{n_k}{2}}{\mathcal {Z}}^{-1}_k\right) \delta [n-m], \end{aligned}$$
(44)

and also \(W_2(t)\) is given by

$$\begin{aligned} W_2(t)&=-\frac{i}{8}\int _0^t(B\big (t_1\big )\times q\big (t_1\big ))^2{\text {d}}t_1\\&-\int _{0<t_2<t_1<t}\bigg (\frac{1}{2}B\big (t_1\big )\cdot L\big (t_1\big )+ E\big (t_1\big )\cdot q\big (t_1\big )\bigg )\\&\bigg (\frac{1}{2}B\big (t_2\big )\cdot L\big (t_2\big )+E\big (t_2\big )\cdot q\big (t_2\big )\bigg ){\text {d}}t_1{\text {d}}t_2 \end{aligned}$$

On using Eq. (37), we get

$$\begin{aligned}&\langle n|(B(t)\times q)^2|m \rangle =\text {e}^{\iota t E(n,m)}\bigg \{B^2(t)\sum _{k=1}^3 \langle n|q_k^2|m \rangle -\sum _{k=1}^3 B_k(t)B_r(t)\langle n|q_kq_r|m \rangle \bigg \}\\&\quad =\bigg \{(B_2^2(t)+B_3^2(t)) \langle n|q_1^2|m \rangle + (B_3^2(t)+B_1^2(t)) \langle n|q_2^2|m \rangle \\&\qquad +\, (B_1^2(t)+B_2^2(t)) \langle n|q_3^2|m \rangle -2\sum _{1<k<r<3} B_k(t)B_r(t)\langle n|q_kq_r|m \rangle \bigg \}\text {e}^{\iota t E(n,m)t} \end{aligned}$$

To calculate \(\langle n|W_2(t)|m \rangle \), we also need \(\langle n|L_k\big (t_1\big )L_r\big (t_2\big )|m \rangle \) and \(\langle n|L_k\big (t_1\big )q_r\big (t_2\big )|m \rangle \)

$$\begin{aligned} L_k\big (t_1\big )L_r\big (t_2\big )=\text {e}^{\iota t_1H_0}L_kexp(-\iota (t_1-t_2)H_0)L_r\mathrm{e}^{-\iota t_2H_0} \end{aligned}$$

So ,

$$\begin{aligned} \langle n|L_k\big (t_1\big )L_r\big (t_2\big )|m \rangle =\text {e}^{\iota (E(n)t_1-E(m)t_2)}\sum _s \langle n|L_k|s \rangle \langle s|L_r|m \rangle \mathrm{e}^{-\iota (t_1-t_2)E(s)} \end{aligned}$$

The other quantity required is

$$\begin{aligned} T_1&= \langle n|\int _{0<t_1<t_2<t} B\big (t_1\big )\cdot L\big (t_1\big )B\big (t_2\big )\cdot L\big (t_2\big ){\text {d}}t_1{\text {d}}t_2|m \rangle \\&=\sum _{k,r=1}^3 \int _{0<t_1<t_2<t} B_k\big (t_1\big )\cdot B_r\big (t_2\big )\langle n|L_k\big (t_1\big )L_r\big (t_2\big )|m \rangle {\text {d}}t_1{\text {d}}t_2\\&=\sum _{k,r,s} \int _{0<t_1<t_2<t} B_k\big (t_1\big )\cdot B_r\big (t_2\big )\mathrm{e}^{-\iota (t_1-t_2)E(s)} \langle n|L_k|s \rangle \langle s|L_r|m \rangle \text {e}^{\iota (E(n)t_1-E(m)t_2}{\text {d}}t_1{\text {d}}t_2 \end{aligned}$$

We now substitute for \(\langle n|L_r|m \rangle \) in the above equation but firstly, let us define \(e_r=(\delta _{r1},\delta _{r2},\delta _{r3})\), \(r=1,2,3\) ,that is,

$$\begin{aligned} e_1=(100),e_2=(010),e_3=(001) \end{aligned}$$

As can be seen clearly,

$$\begin{aligned} {\mathcal {Z}}^{-1}_r{\mathcal {Z}}_s \delta [n-m]=\delta [n-m-e_r+e_s] \end{aligned}$$

So, on incorporating all the above we have \(T_1\) as

$$\begin{aligned} T_1&=-\sum _{k,r,s,\alpha ,\beta ,\mu ,\nu }\bigg (\int _{0<t_2<t_1<t}B_k\big (t_1\big )\cdot B_r\big (t_2\big )\mathrm{e}^{-\iota (t_1-t_2)E(s)} \epsilon (k\alpha \beta )\epsilon (r\mu \nu )\\&\quad \sqrt{n_\alpha s_\beta } \sqrt{s_\mu m_\nu }\delta [n-s-e_\alpha +e_\beta ] \delta \big [s-m-e_\mu +e_\nu \big ]\text {e}^{\iota (E(n)t_1-E(m)t_2)}\bigg ){\text {d}}t_1{\text {d}}t_2\\&=-\sum _{k,r,\alpha ,\beta ,\mu ,\nu }\bigg (\int _{0<t_2<t_1<t}B_k\big (t_1\big )\cdot B_r\big (t_2\big )\mathrm{e}^{-\iota (t_1-t_2)E(n-e_\alpha +e_\beta )} \epsilon (k\alpha \beta )\epsilon (r\mu \nu )\\&\quad \times \, \sqrt{n_\alpha \big (n_\beta -\delta _{\alpha \beta }+1\big ) m_\nu \big (m_\mu -1+\delta _{\mu \nu }\big )}\delta \big [n-m-e_\alpha +e_\beta +e_\mu -e_\nu \big ]\\&\quad \times \, \text {e}^{\iota \big (E(n)t_1-E(m)t_2\big )}\bigg ){\text {d}}t_1{\text {d}}t_2 \end{aligned}$$

Defining

$$\begin{aligned} K_{k,r}^{(n,m)}\big (t_1,t_2\big )&=\sum _s \mathrm{e}^{-\iota (t_1-t_2)E(s)}\langle n|L_k|s \rangle \langle s|L_r|m \rangle \mathrm{e}^{\iota \big (E(n)t_1-E(m)t_2\big )}\\&=-\sum _{\alpha \beta \mu \nu } \mathrm{e}^{-\iota \big (t_1-t_2\big ) E\big (n-e_\alpha +e_\beta \big )}\epsilon (k\alpha \beta )\epsilon (r\mu \nu )\\&\quad \times \,\sqrt{n_\alpha \big (n_\beta -\delta _{\alpha \beta }+1\big ) m_\nu \big (m_\mu -1+\delta _{\mu \nu }\big )}\delta \left[ n-m-e_\alpha +e_\beta +e_\mu -e_\nu \right] \\&\quad \times \, \text {e}^{\iota \big (E(n)t_1-E(m)t_2\big )} \end{aligned}$$

Thus,

$$\begin{aligned} \langle n|W_2(t)|m \rangle&=-\frac{i}{8}\int _0^t\langle n| (B\big (t_1\big )\times q\big (t_1\big ))^2|m\rangle {\text {d}}t_1\\&\quad -\frac{1}{8}\sum _{k,r}\int _{0<t_2<t_1<t}K_{k,r}^{(n,m)}\big (t_1,t_2\big )B_k\big (t_1\big )B_r\big (t_2\big ){\text {d}}t_1{\text {d}}t _2\\&\quad -\,\frac{1}{4}\int _{0<t_2<t_1<t}\langle n|B\big (t_1\big )\cdot L\big (t_1\big )E\big (t_2\big )\cdot q\big (t_2\big )|m \rangle {\text {d}}t_1{\text {d}}t_2\\&\quad -\,\frac{1}{4}\int _{0<t_2<t_1<t}\langle n|E\big (t_1\big )\cdot q\big (t_1\big )B\big (t_2\big )\cdot L\big (t_2\big )|m \rangle {\text {d}}t_1{\text {d}}t_2\\&\quad -\,\frac{1}{2}\int _{0<t_2<t_1<t}\langle n|E\big (t_1\big )\cdot q\big (t_1\big )E\big (t_2\big )\cdot q\big (t_2\big )|m \rangle {\text {d}}t_1{\text {d}}t_2 \end{aligned}$$

We need to calculate the general matrix element of \((B(t)\times q(t))^2\), so

$$\begin{aligned} (B(t)\times q(t))^2= & {} \sum _{k\alpha \beta \mu \nu }\{\epsilon (k\alpha \beta )\epsilon (k\mu \nu )B_\alpha (t)B\mu (t) q_\beta (t)q_\nu (t)\}\\ \langle n|(B(t)\times q(t))^2|m \rangle= & {} \sum _{k\alpha \beta \mu \nu }\{\epsilon (k\alpha \beta )\epsilon (k\mu \nu )B_\alpha (t)B\mu (t) \langle n|q_\beta (t)q_\nu (t)|m \rangle \} \end{aligned}$$

Define

$$\begin{aligned} G_{\alpha \mu }^{(n,m)}(t)=\sum _{k\beta \nu }\{\epsilon (k\alpha \beta )\epsilon (k\mu \nu ) \langle n|q_\beta q_\nu |m \rangle \}\mathrm{e}^{itE(n,m)} \end{aligned}$$

Thus,

$$\begin{aligned} T_2&\triangleq \int _o^t \langle n|(B(t)\times q(t))^2|m \rangle {\text {d}}t_1=\sum _{k,r} \int _o^t G_{kr}^{(n,m)}\big (t_1\big )B_k\big (t_1\big )B_r\big (t_1\big ){\text {d}}t_1\\ T_3&\triangleq \int _{0<t_2<t_1<t}\langle n|B\big (t_1\big )\cdot L\big (t_1\big )E\big (t_2\big )\cdot q\big (t_2\big )|m \rangle {\text {d}}t_1{\text {d}}t_2 \end{aligned}$$

where

$$\begin{aligned} \langle n|B\big (t_1\big )\cdot L\big (t_1\big )E\big (t_2\big )\cdot q\big (t_2\big )|m \rangle =\sum _{k,r}B_k\big (t_1\big )E_r\big (t_2\big )\langle n|L_k\big (t_1\big )q_r\big (t_2\big )|m \rangle \end{aligned}$$

and

$$\begin{aligned} \langle n|L_k\big (t_1\big )q_r\big (t_2\big )|m \rangle&= \langle n|\mathrm{e}^{\iota t_1H_0}L_k\mathrm{e}^{-\iota (t_1-t_2)H_0}q_r\mathrm{e}^{-\iota t_2H_0}|m \rangle \\&=\text {e}^{\iota (E(n)t_1-E(m)t_2)}\sum _s \langle n|L_k|s \rangle \langle s|q_r|m \rangle \mathrm{e}^{-\iota (t_1-t_2)}E(s)) \end{aligned}$$

Let the above equation be equal to \(H_{k,r}^{(n,m)}\big (t_1,t_2\big )\). Thus,

$$\begin{aligned} T_3= & {} \sum _{k,r}\int _{o<t_2<t_1<t}H_{k,r}^{(n,m)}\big (t_1,t_2\big )B_k\big (t_1\big )E_r\big (t_2\big ){\text {d}}t_1{\text {d}}t_2\\ T_4\triangleq & {} \int _{o<t_2<t_1<t} \langle n|E\big (t_1\big )\cdot q\big (t_1\big )B\big (t_2\big )\cdot L\big (t_2\big )|m \rangle {\text {d}}t_1{\text {d}}t_2\\= & {} \sum _{k,r} \int _{o<t_2<t_1<t} E_k\big (t_1\big )B_r\big (t_2\big ) \langle n|q_k\big (t_1\big )L_r\big (t_2\big )|m \rangle {\text {d}}t_1{\text {d}}t_2\\ \langle n|q_k\big (t_1\big )L_r\big (t_2\big )|m \rangle= & {} \text {e}^{\iota (E(n)t_1-E(m)t_2)} \langle n|q_k\mathrm{e}^{-\iota (t_1-t_2)H_0}L_r|m \rangle \\= & {} \text {e}^{\iota (E(n)t_1-E(m)t_2)} \sum _s \langle n|q_k|s \rangle \langle s|L_r|m \rangle \mathrm{e}^{-\iota (t_1-t_2)E(s)}\\\triangleq & {} L_{k,r}^{(n,m)}\big (t_1,t_2\big ) \end{aligned}$$

So \(T_4\) finally becomes

$$\begin{aligned} T_4=\sum _{k,r} \int _o^t L_{kr}^{(n,m)}\big (t_1,t_2\big )E_k\big (t_1\big )B_r\big (t_2\big ){\text {d}}t_1{\text {d}}t_2 \end{aligned}$$

Similarly,

$$\begin{aligned} T_5&\triangleq \int _{o<t_2<t_1<t}\langle n|E\big (t_1\big )\cdot q\big (t_1\big )E\big (t_2\big )\cdot q\big (t_2\big )|m \rangle {\text {d}}t_1{\text {d}}t_2\\&=\sum _{k,r} \int _{o<t_2<t_1<t} E_k\big (t_1\big )E_r\big (t_2\big ) \langle n|q_k\big (t_1\big )q_r\big (t_2\big )|m \rangle {\text {d}}t_1{\text {d}}t_2 \end{aligned}$$

we substitute the following in the above equation

$$\begin{aligned} \langle n|q_k\big (t_1\big )q_r\big (t_2\big )|m \rangle&=\text {e}^{\iota (E(n)t_1-E(m)t_2)} \sum _s \langle n|q_k|s \rangle \langle s|q_r|m \rangle \mathrm{e}^{-\iota (t_1-t_2)E(s)}\\&\triangleq \mu _{k,r}^{(n,m)}\big (t_1,t_2\big ) \end{aligned}$$

So \(T_5\) finally becomes

$$\begin{aligned} T_5=\sum _{k,r} \int _o^t \mu _{kr}^{(n,m)}\big (t_1,t_2\big )E_k\big (t_1\big )E_r\big (t_2\big ){\text {d}}t_1{\text {d}}t_2 \end{aligned}$$

Thus, we have \(W_2(t)\) as

$$\begin{aligned} \langle n|W_2(t)|m \rangle&=-\frac{i}{2}\sum _{k,r} \int _o^t G_{kr}^{(n,m)}\big (t_1\big )B_k\big (t_1\big )B_r\big (t_1\big ){\text {d}}t_1\\&\quad -\,\frac{1}{8}\sum _{k,r} \int _o^t K_{kr}^{(n,m)}\big (t_1,t_2\big )B_k\big (t_1\big )B_r\big (t_2\big ){\text {d}}t_1{\text {d}}t_2\\&\quad -\,\frac{1}{4}\sum _{k,r} \int _o^t H_{kr}^{(n,m)}\big (t_1,t_2\big )B_k\big (t_1\big )E_r\big (t_2\big ){\text {d}}t_1{\text {d}}t_2\\&\quad -\,\frac{1}{4}\sum _{k,r} \int _o^t L_{kr}^{(n,m)}\big (t_1,t_2\big )E_k\big (t_1\big )B_r\big (t_2\big ){\text {d}}t_1{\text {d}}t_2\\&\quad -\,\frac{1}{2}\sum _{k,r} \int _o^t \mu _{kr}^{(n,m)}\big (t_1,t_2\big )E_k\big (t_1\big )E_r\big (t_2\big ){\text {d}}t_1{\text {d}}t_2 \end{aligned}$$

Define the kernels

$$\begin{aligned} g_{11}\big (t_1,t_2;n,m,k,r\big )= & {} -\frac{i}{2} G_{kr}^{(n,m)}\big (t_1,t_2\big )\big (t_1\big )\delta \big (t_1-t_2\big )-\frac{1}{8} K_{kr}^{(n,m)}\theta \big (t_1-t_2\big )\\ g_{12}\big (t_1,t_2;n,m,k,r\big )= & {} -\frac{1}{4} H_{kr}^{(n,m)}\big (t_1,t_2\big )\big (t_1\big )\theta \big (t_1-t_2\big )-\frac{1}{4} L_{kr}^{(n,m)}\theta \big (t_2-t_1\big )\\ g_{22}\big (t_1,t_2;n,m,k,r\big )= & {} -\frac{1}{2} \mu _{kr}^{(n,m)}\big (t_1,t_2\big )\theta \big (t_1-t_2\big ) \end{aligned}$$

The general matrix element of \(W_2(t)\) becomes

$$\begin{aligned} \langle n|W_2(t)|m \rangle&=\sum _{k,r} \int _{[0,t]^2} g_{11}\big (t_1,t_2;n,m,k,r\big )B_k\big (t_1\big )B_r\big (t_2\big ){\text {d}}t_1{\text {d}}t_2\nonumber \\&\quad +\,\sum _{k,r} \int _{[0,t]^2} g_{12}\big (t_1,t_2;n,m,k,r\big )B_k\big (t_1\big )E_r\big (t_2\big ){\text {d}}t_1{\text {d}}t_2\nonumber \\&\quad +\,\sum _{k,r} \int _{[0,t]^2} g_{22}\big (t_1,t_2;n,m,k,r\big )E_k\big (t_1\big )E_r\big (t_2\big ){\text {d}}t_1{\text {d}}t_2 \end{aligned}$$
(45)

Likewise,

$$\begin{aligned} \langle n|W_1(t)|m \rangle&= -\frac{i}{2}\sum _{k} \int _o^t B_k\big (t_1\big ) \langle n|L_k\big (t_1\big )|m \rangle {\text {d}}t_1-i \sum _{k} \int _o^t E_k\big (t_1\big )\langle n|q_k\big (t_1\big )|m \rangle {\text {d}}t_1\\ \langle n|L_k(t)|m \rangle&=\mathrm{e}^{\iota E(n,m)t} \langle n|L_k|m \rangle \triangleq f(t,n,m,k)\\ \langle n|q_k(t)|m \rangle&=\mathrm{e}^{\iota E(n,m)t} \langle n|q_k|m \rangle \triangleq g(t,n,m,k) \end{aligned}$$

Then, define

$$\begin{aligned} h_1(t,n,m,k)= & {} -\frac{i}{2}f(t,n,m,k)\\ h_2(t,n,m,k)= & {} -i g(t,n,m,k) \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, K., Chauhan, G., Rawat, T.K. et al. Realization of quantum gates based on three-dimensional harmonic oscillator in a time-varying electromagnetic field. Quantum Inf Process 14, 3279–3302 (2015). https://doi.org/10.1007/s11128-015-1061-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1061-6

Keywords

Navigation