Skip to main content
Log in

Extracting remaining information from an inconclusive result in optimal unambiguous state discrimination

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In unambiguous state discrimination, the measurement results consist of the error-free results and an inconclusive result, and an inconclusive result is conventionally regarded as a useless remainder from which no information about initial states is extracted. In this paper, we investigate the problem of extracting remaining information from an inconclusive result, provided that the optimal total success probability is determined. We present three simple examples. An inconclusive answer in the first two examples can be extracted partial information, while an inconclusive answer in the third one cannot be. The initial states in the third example are defined as the highly symmetric states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gisin, N., Ribordy, G., Tittel, W., et al.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  2. Barnett, S.M., Croke, S.: Quantum state discrimination. Adv. Opt. Photon. 1, 238 (2009)

    Article  Google Scholar 

  3. Bergou, J.A.: Discrimination of quantum states. J. Mod. Opt. 57, 160 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Ivanovic, I.D.: How to differentiate between non-orthogonal states. Phys. Lett. A 123, 257 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  5. Dieks, D.: Overlap and distinguishability of quantum states. Phys. Lett. A 126, 303 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  6. Peres, A.: How to differentiate between non-orthogonal states. Phys. Lett. A 128, 19 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  7. Jaeger, G., Shimony, A.: Optimal distinction between two non-orthogonal quantum states. Phys. Lett. A 197, 83 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Peres, A., Terno, D.R.: Optimal distinction between non-orthogonal quantum states. J. Phys. A 31, 7105 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Chefles, A.: Unambiguous discrimination between linearly-independent quantum states. Phys. Lett. A 238, 339 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  10. Sun, Y., Hillery, M., Bergou, J.A.: Optimum unambiguous discrimination between linearly independent nonorthogonal quantum states and its optical realization. Phys. Rev. A 64, 022311 (2001)

    Article  ADS  Google Scholar 

  11. Jafarizadeh, M.A., Rezaei, M., Karimi, N., et al.: Optimal unambiguous discrimination of quantum states. Phys. Rev. A 77, 042314 (2008)

    Article  ADS  Google Scholar 

  12. Samsonov, B.F.: Optimal positive-operator-valued measures for unambiguous state discrimination. Phys. Rev. A 79, 042312 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  13. Pang, S., Wu, S.: Optimum unambiguous discrimination of linearly independent pure states. Phys. Rev. A 80, 052320 (2009)

    Article  ADS  Google Scholar 

  14. Bergou, J.A., Futschik, U., Feldman, E.: Optimal unambiguous discrimination of pure quantum states. Phys. Rev. Lett. 108, 250502 (2012)

    Article  ADS  Google Scholar 

  15. Nakahira, K., Usuda, T.S., Kato, K.: Discrimination between geometrically uniform quantum states with inconclusive results. Phys. Rev. A 86, 032316 (2012)

    Article  ADS  Google Scholar 

  16. Rudolph, T., Spekkens, R.W., Turner, P.S.: Unambiguous discrimination of mixed states. Phys. Rev. A 68, 010301(R) (2003)

    Article  MathSciNet  ADS  Google Scholar 

  17. Herzog, U., Bergou, J.A.: Optimum unambiguous discrimination of two mixed quantum states. Phys. Rev. A 71, 050301(R) (2005)

    Article  MathSciNet  ADS  Google Scholar 

  18. Herzog, U.: Optimum unambiguous discrimination of two mixed states and application to a class of similar states. Phys. Rev. A 75, 052309 (2007)

    Article  ADS  Google Scholar 

  19. Zhou, X.F., Zhang, Y.S., Guo, G.C.: Unambiguous discrimination of mixed states: a description based on system-ancilla coupling. Phys. Rev. A 75, 052314 (2007)

    Article  ADS  Google Scholar 

  20. Kleinmann, M., Kampermann, H., Bruß, D.: Unambiguous state discrimination: optimal solution and case study. Phys. Rev. A 81, 020304(R) (2010)

    Article  ADS  Google Scholar 

  21. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

  22. Barnett, S.M.: Minimum-error discrimination between multiply symmetric states. Phys. Rev. A 64, 030303(R) (2001)

    Article  ADS  Google Scholar 

  23. Herzog, U., Bergou, J.A.: Minimum-error discrimination between subsets of linearly dependent quantum states. Phys. Rev. A 65, 050305(R) (2002)

    Article  ADS  Google Scholar 

  24. Chou, C.L.: Minimum-error discrimination among mirror-symmetric mixed quantum states. Phys. Rev. A 70, 062316 (2004)

    Article  ADS  Google Scholar 

  25. Mochon, C.: Family of generalized “pretty good” measurements and the minimal-error pure-state discrimination problems for which they are optimal. Phys. Rev. A 73, 032328 (2006)

    Article  ADS  Google Scholar 

  26. Qiu, D.: Minimum-error discrimination between mixed quantum states. Phys. Rev. A 77, 012328 (2008)

    Article  ADS  Google Scholar 

  27. Tyson, J.: Error rates of Belavkin weighted quantum measurements and a converse to Holevo’s asymptotic optimality theorem. Phys. Rev. A 79, 032343 (2009)

    Article  ADS  Google Scholar 

  28. Bae, J., Hwang, W.Y.: Optimal discrimination of Qubit States—methods, solutions, and properties. Phys. Rev. A 87, 012334 (2013)

    Article  ADS  Google Scholar 

  29. Croke, S., Andersson, E., Barnett, S.M., et al.: Maximum confidence quantum measurements. Phys. Rev. Lett. 96, 070401 (2006)

    Article  ADS  Google Scholar 

  30. Mosley, P.J., Croke, S., Walmsley, I.A., et al.: Experimental realization of maximum confidence state discrimination for the extraction of quantum information. Phys. Rev. Lett. 97, 193601 (2006)

    Article  ADS  Google Scholar 

  31. Herzog, U.: Discrimination of two mixed quantum states with maximum confidence and minimum probability of inconclusive results. Phys. Rev. A 79, 032323 (2009)

    Article  ADS  Google Scholar 

  32. Steudle, G.A., Knauer, S., Herzog, U., et al.: Experimental optimum maximum-confidence discrimination and optimum unambiguous discrimination of two mixed single-photon states. Phys. Rev. A 83, 050304 (2011)

    Article  ADS  Google Scholar 

  33. Jiménez, O., Solís-Prosser, M.A., Delgado, A., et al.: Maximum-confidence discrimination among symmetric qudit states. Phys. Rev. A 84, 062315 (2011)

    Article  ADS  Google Scholar 

  34. Sedlák, M.: Quantum theory of unambiguous measurements. Acta Physica Slovaca 56(6), 653 (2009)

    ADS  Google Scholar 

  35. Chefles, A., Barnett, S.M.: Strategies for discriminating between non-orthogonal quantum states. J. Mod. Opt. 45, 1295 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Herzog, U.: Optimal state discrimination with a fixed rate of inconclusive results: Analytical solutions and relation to state discrimination with a fixed error rate. Phys. Rev. A 86, 032314 (2012)

    Article  ADS  Google Scholar 

  37. Bagan, E., Muñoz-Tapia, R., Olivares-Rentería, G.A., et al.: Optimal discrimination of quantum states with a fixed rate of inconclusive outcomes. Phys. Rev. A 86, 040303(R) (2012)

    Article  ADS  Google Scholar 

  38. Jiménez, O., Bergou, J., Delgado, A.: Probabilistic cloning of three symmetric states. Phys. Rev. A 82, 062307 (2010)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Science Foundation of China under Grant No. 61073048, and 11104057, the Natural Science Foundation of the Education Department of Anhui Province of China under Grant No. KJ2012A245, and Anhui Provincial Natural Science Foundation under Grant No. 1408085MA20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Hai Zhang.

Appendix: Derivation of three linearly independent symmetric states

Appendix: Derivation of three linearly independent symmetric states

The input states we explore are given in Ref. [38]. The authors defined the symmetric states

$$\begin{aligned}&\left| {\varphi _1 } \right\rangle =c_1 \left| 1 \right\rangle +c_2 \left| 2 \right\rangle +c_3 \left| 3 \right\rangle ,\nonumber \\&\left| {\varphi _2 } \right\rangle =c_1 \left| 1 \right\rangle +e^{i{2\pi }/3}c_2 \left| 2 \right\rangle +e^{-i{2\pi }/3}c_3 \left| 3 \right\rangle ,\nonumber \\&\left| {\varphi _3 } \right\rangle =c_1 \left| 1 \right\rangle +e^{-i{2\pi }/3}c_2 \left| 2 \right\rangle +e^{i{2\pi }/3}c_3 \left| 3 \right\rangle , \end{aligned}$$
(41)

where the arbitrary \(c_k \) coefficients satisfy the normalization condition \(\sum _{i=1}^3 {\left| {c_i } \right| ^{2}} =1\). The complex inner product \(S=\left| S \right| e^{i\theta }\) among the symmetric states is defined by

$$\begin{aligned} S=\left\langle {\varphi _1 } \right. \left| {\varphi _2 } \right\rangle =\left\langle {\varphi _2 } \right. \left| {\varphi _3 } \right\rangle =\left\langle {\varphi _3 } \right. \left| {\varphi _1 } \right\rangle =\left| S \right| e^{i\theta }. \end{aligned}$$
(42)

The symmetric states are linearly independent if and only if \(S\in \left[ {0,\left| {S_\theta } \right| } \right) \) [38], where

$$\begin{aligned} \left| {S_\theta } \right| =\left\{ {\begin{array}{l} \frac{-1}{2\cos \theta },\quad \quad \quad \quad \quad \theta \in \left[ {{2\pi }/3,{4\pi }/3} \right] \\ \frac{-1}{2\cos \left( {\theta +{2\pi }/3} \right) },\quad \quad \theta \in \left[ {0,{2\pi }/3} \right] \\ \frac{-1}{2\cos \left( {\theta -{2\pi }/3} \right) },\quad \quad \theta \in \left[ {{4\pi }/3,2\pi } \right] \\ \end{array}} \right. , \end{aligned}$$
(43)

Note that \(S=0\) implies the states are orthogonal and \(S=\left| {S_\theta } \right| \) implies three linearly dependent states. In our paper, we take \(S\in \left( {0,\left| {S_\theta } \right| } \right) \), implying three linearly independent symmetric states. We use the second expression in Eq. (43). For \(\beta \in \left( {0,\pi /4} \right) \), we define the phase factor, \(\theta \), as

$$\begin{aligned} \tan \theta =\frac{\frac{\sqrt{3}}{2}\sin ^{2}\beta }{1-\frac{3}{2}\sin ^{2}\beta }\in \left( {0,\sqrt{3}} \right) , \quad \theta \in \left( {0,\pi /3} \right) . \end{aligned}$$
(44)

So the second expression turns to

$$\begin{aligned} \left| {S_\theta } \right| =\frac{-1}{2\cos \left( {\theta +{2\pi }/3} \right) }=\sqrt{1-3\sin ^{2}\beta \cos ^{2}\beta }\in \left( {\frac{1}{2},1} \right) \!. \end{aligned}$$
(45)

When \(S=\left| {S_\theta } \right| \), the symmetric states become linearly dependent. For example, the linearly dependent symmetric states are given by Eq. (59) [29]

$$\begin{aligned}&\left| {\tilde{\varphi }_1 } \right\rangle =\cos \beta \left| {\bar{{1}}} \right\rangle +\sin \beta \left| {\bar{{2}}} \right\rangle \!,\nonumber \\&\left| {\tilde{\varphi }_2 } \right\rangle =\cos \beta \left| {\bar{{1}}} \right\rangle +e^{i\frac{2\pi }{3}}\sin \beta \left| {\bar{{2}}} \right\rangle \!,\nonumber \\&\left| {\tilde{\varphi }_3 } \right\rangle =\cos \beta \left| {\bar{{1}}} \right\rangle +e^{i\frac{4\pi }{3}}\sin \beta \left| {\bar{{2}}} \right\rangle \!, \end{aligned}$$
(46)

with the complex inner product

$$\begin{aligned} S=\left\langle {\tilde{\varphi }_1 } \right. \left| {\tilde{\varphi }_2 } \right\rangle =\left\langle {\tilde{\varphi }_2 } \right. \left| {\tilde{\varphi }_3 } \right\rangle =\left\langle {\tilde{\varphi }_3 } \right. \left| {\tilde{\varphi }_1 } \right\rangle \nonumber \\ =\cos ^{2}\beta +e^{i\frac{2\pi }{3}}\sin ^{2}\beta =\left| {S_\theta } \right| e^{i\theta }. \end{aligned}$$
(47)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Yu, LB., Zhang, WH. et al. Extracting remaining information from an inconclusive result in optimal unambiguous state discrimination. Quantum Inf Process 13, 2619–2632 (2014). https://doi.org/10.1007/s11128-014-0817-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0817-8

Keywords

Navigation