Skip to main content
Log in

Multi-party quantum private comparison protocol with \(n\)-level entangled states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, two multi-party quantum private comparison (MQPC) protocols are proposed in distributed mode and traveling mode, respectively. Compared with the first MQPC protocol, which pays attention to compare between arbitrary two participants, our protocols focus on the comparison of equality for \(n\) participants with a more reasonable assumption of the third party. Through executing our protocols once, it is easy to get if \(n\) participants’ secrets are same or not. In addition, our protocols are proved to be secure against the attacks from both outside attackers and dishonest participants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceeding of the IEEE International Conference on Computers, Systems and Signal, pp. 175–179. Bangalore, India (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  4. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  5. Cai, Q.Y., Li, B.W.: Improving the capacity of the Boström–Felbinger protocol. Phys. Rev. A 69, 054301 (2004)

    Article  ADS  Google Scholar 

  6. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  7. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature (London) 390, 575 (1997)

    Article  ADS  Google Scholar 

  9. Hillery, M.: Quantum voting and privacy protection: first steps. Int. Soc. Opt. Eng. (2006). doi:10.1117/2.1200610.0419

  10. Bonanome, M., Bužek, V., Hillery, M., Ziman, M.: Toward protocols for quantum-ensured privacy and secure voting. Phys. Rev. A 84, 022331 (2011)

    Article  ADS  Google Scholar 

  11. Naseri, M.: Secure quantum sealed-bid auction. Opt. Commun. 282, 1939 (2009)

    Article  ADS  Google Scholar 

  12. Wang, Q.L., Zhang, W.W., Su, Q.: Revisiting “The loophole of the improved secure quantum sealed-bid auction with post-confirmation and solution”. Int. J. Theor. Phys. (2014). doi:10.1007/s10773-014-2112-y

    Google Scholar 

  13. Du, J.Z., Chen, X.B., Wen, Q.Y., Zhu, F.C.: Secure multiparty quantum summation. Acta Phys. Sin. 56, 6214 (2007)

    MathSciNet  Google Scholar 

  14. Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd I EEE Symposium on Foundations of Computer Science (FOCS 82), p. 160, Washington, DC, USA (1982)

  15. Boudot, F., Schoenmakers, B., Traore, J.: A fair and efficient solution to the socialist millionaires problem. Discr. Appl. Math. (Special Issue Coding Cryptol.) 111(1–2), 23–36 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42, 055305 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  17. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1161–1165 (2009)

    Google Scholar 

  18. Jia, H.Y., Wen, Q.Y., Song, T.T., Gao, F.: Quantum protocol for millionaire problem. Opt. Commun. 284, 545–549 (2011)

    Article  ADS  Google Scholar 

  19. Liu, B., Gao, F., Jia, H.Y., Huang, W., Zhang, W.W., Wen, Q.Y.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 12, 887–897 (2012)

  20. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11, 373–384 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Comment on “Quantum private comparison protocols with a semi-honest third party”. Quantum Inf. Process. 12, 877–885 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Chang, Y.J., Tsai, ChW: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process. 12, 1077–1088 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Zhang, W.W., Zhang, K.J.: Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inf. Process. 12, 1987–1990 (2013)

    ADS  Google Scholar 

  24. Zhang, W.W., Li, D., Zhang, K.J., Zuo, H.J.: A quantum protocol for millionaire problem with Bell states. Quantum Inf. Process. 12, 2241–2249 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci. Chin. Phys. Mech. Astron. 56, 1670–1678 (2013)

    Article  ADS  Google Scholar 

  26. Yu, C.H., Guo, G.D., Lin, S.: Quantum private comparison with \(d\)-level single-particle states. Phys. Scr. 88, 065013 (2013)

    Article  ADS  Google Scholar 

  27. Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 3414 (1997)

    Article  ADS  Google Scholar 

  28. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56, 1154–1162 (1997)

    Article  ADS  Google Scholar 

  29. Damgard, I., Fehr, S., Salvail, L., Schaffner, C.: Secure Identification and QKD in the bounded-quantum-storage model. Proc. Adv. Cryptol. 4622, 342–359 (2007)

    MathSciNet  Google Scholar 

  30. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the Bradler C-Dusek protocol. Quantum Inf. Comput. 7, 329 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of the Hillery–Bužek–Berthiaume quantum secret sharing protocol. Phys. Rev. A 76, 062324 (2007)

    Article  ADS  Google Scholar 

  32. Lin, S., Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on “Multiparty quantum secret sharing of classical messages based on entanglement swapping”. Phys. Rev. A 76, 036301 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  33. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on “Experimental demonstration of a quantum protocol for byzantine agreement and liar detection”. Phys. Rev. Lett. 101, 208901 (2008)

    Article  ADS  Google Scholar 

  34. Song, T.T., Zhang, J., Gao, F.: Participant attack on quantum secret sharing based on entanglement swapping. Chin. Phys. B 18, 1333 (2009)

    Article  ADS  Google Scholar 

  35. Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using \(d\)-level systems. Phys. Rev. Lett. 88, 127902 (2002)

    Article  ADS  Google Scholar 

  36. Karimipour, V., Bahraminasab, A.: Quantum key distribution for \(d\)-level systems with generalized Bell states. Phys. Rev. A 65, 052331 (2002)

    Article  ADS  Google Scholar 

  37. Durt, T., Kaszlikowski, D., Chen, J.L., Kwek, L.C.: Security of quantum key distributions with entangled qudits. Phys. Rev. A 69, 032313 (2004)

    Article  ADS  Google Scholar 

  38. Sheridan, L., Scarani, V.: Security proof for quantum key distribution using qudit systems. Phys. Rev. A 82, 030301 (2010)

    Article  ADS  Google Scholar 

  39. Raymond, L., Cesar, M., Juan, P.P., Wojciech, H.Z.: Perfect quantum error correcting code. Phys. Rev. Lett. 77, 198–201 (1996)

    Article  Google Scholar 

  40. Emanuel, K., Raymond, L.: Theory of quantum error-correcting codes. Phys. Rev. A 55, 900–911 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by NSFC (Grant Nos. 61272057, 61202434, 61170270, 61100203, 61003286, 61121061), NCET (Grant No. NCET-10-0260), Beijing Natural Science Foundation (Grant Nos. 4112040, 4122054), the Fundamental Research Funds for the Central Universities (Grant Nos. 2012RC0612, 2011YB01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Le Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, QL., Sun, HX. & Huang, W. Multi-party quantum private comparison protocol with \(n\)-level entangled states. Quantum Inf Process 13, 2375–2389 (2014). https://doi.org/10.1007/s11128-014-0774-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0774-2

Keywords

Navigation