Skip to main content
Log in

Quantum deniable authentication protocol

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The proposed quantum identity authentication schemes only involved authentication between two communicators, but communications with deniability capability are often desired in electronic applications such as online negotiation and electronic voting. In this paper, we proposed a quantum deniable authentication protocol. According to the property of unitary transformation and quantum one-way function, this protocol can provide that only the specified receiver can identify the true source of a given message and the specified receiver cannot prove the source of the message to a third party by a transcript simulation algorithm. Moreover, the quantum key distribution and quantum encryption algorithm guarantee the unconditional security of this scheme. Security analysis results show that this protocol satisfies the basic security requirements of deniable authentication protocol such as completeness and deniability and can withstand the forgery attack, impersonation attack, inter-resend attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing. pp. 175–179. IEEE, New York (1984)

  2. Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–664 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two non-orthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70, 012311 (2004)

    Article  ADS  Google Scholar 

  5. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)

    Article  ADS  Google Scholar 

  6. Gan, G.: Quantum key distribution scheme with high efficiency. Commun. Theor. Phys. 51(5), 820–822 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Wei, T.-S., Tsai, C.-W., Hwang, T.: Quantum key distribution and quantum authentication based on entangled state. Int. J. Theor. Phys. 50, 2703–2707 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  9. Wang, J., Zhang, Q., Tang, C.J.: Quantum secure direct communication based on order rearrangement of single photons. Phys. Lett. A 358(4), 256–258.7 (2006)

    Article  ADS  MATH  Google Scholar 

  10. Li, X.H., Deng, F.G., Li, C.Y., et al.: Deterministic secure quantum communication without maximally entangled states. J. Korean. Phys. Soc. 49, 1354–1359 (2006)

    MathSciNet  Google Scholar 

  11. Li, X.H., Li, C.Y., Deng, F.G., et al.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. 16, 2149–2153 (2007)

    Article  ADS  Google Scholar 

  12. Sheikhehi, F., Hantehzadeh, M., Naseri, M.: Secure quantum report with authentication based on GHZ states and entanglement swapping. J. Theor. Appl. Phys. 4, 39–44 (2011)

    Google Scholar 

  13. Zhang, Q., Li, C., Li, Y., Nie. Y.: Quantum secure direct communication based on four-qubit cluster states. Int. J. Theor. Phys. (2012). doi:10.1007/s10773-012-1294-4

  14. Yu, C.H., Guo, G.D., Lin, S.: Quantum secure direct communication with authentication using two nonorthogonal states. Int. J. Theor. Phys. (2012). doi:10.1007/s10773-012-1336-y

  15. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  16. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

    Article  ADS  Google Scholar 

  17. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)

    Article  ADS  Google Scholar 

  18. Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310, 247–251 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Deng, F.G., et al.: Circular quantum secret sharing. J. Phys. A Math. Gen. 39, 14089 (2006)

    Article  ADS  MATH  Google Scholar 

  20. Li, X.H., et al.: Multiparty quantum remote secret conference. Chin. Phys. Lett. 24, 23 (2007)

    Article  ADS  MATH  Google Scholar 

  21. Tseng, H.-Y., Tsai, C.-W., Hwang, T., Li, C.-M.: Quantum secret sharing based on suantum search algorithm. Int. J. Theor. Phys. 51, 3101–3108 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Du, R., Sun, Z., Wang, B., Long, D.: Quantum secret sharing of secure direct communication using one-time pad. Int. J. Theor. Phys. 51, 2727–2736 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gao, G., et al.: An efficient multiparty quantum secret sharing protocol based on Bell states in the high dimension Hilbert space. Int. J. Theor. Phys. 49, 2852 (2010)

    Article  MATH  Google Scholar 

  24. Liu, L.-L., Tsai, C.-W., Hwang, T.: Quantum secret sharing using symmetric \(W\) state. Int. J. Theor. Phys. 51, 2291–2306 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. DuŠek, M., Haderka, O., Hendrych, M., et al.: Quantum identification system. Phys. Rev. A 60, 149–156 (1999)

    Article  ADS  Google Scholar 

  26. Curty, M., Santos, D.J.: Quantum authentication of classical messages. Phys. Rev. A 64, 062309 (2001)

    Article  ADS  Google Scholar 

  27. Mihara, T.: Quantum identification schemes with entanglements. Phys. Rev. A 65, 05236 (2002)

    Article  Google Scholar 

  28. Zeng, G.H., Zhang, W.P.: Identity verification in quantum key distribution. Phys. Rev. A 61, 022303 (2001)

    Article  ADS  Google Scholar 

  29. Ljunggren, D., Bourennane, M., Karlsson, A.: Authority-based user authentication in quantum key distribution. Phys. Rev. A 62, 022305 (2000)

    Article  ADS  Google Scholar 

  30. Zhou, N.R., Zeng, G.H., Zeng, W.J., et al.: Cross-center quantum identification scheme based on teleportation and entanglement swapping. Opt. Commun. 254, 380–388 (2005)

    Article  ADS  Google Scholar 

  31. Wang, T.-Y., Wen, Q.-Y., Zhu, F.-C.: Secure authentication of classical messages with decoherence-free states. Opt. Commun. 282, 3382–3385 (2009)

    Article  ADS  Google Scholar 

  32. Li, N., Zha, X.W., Lan, Q.: Secure quantum report with authentication based on six-particle cluster state and entanglement swapping. Sci. Ch. Inf. Sci. (2012). doi:10.1007/s11432-012-4704-6

  33. Aumann, Y., Rabin M.: Authentication, enhanced security and error correcting codes. Crypto’ 98, Santa Barbara, CA, USA, LNCS 1462, pp. 299–303. Springer, Berlin (1998)

  34. Aumann, Y., Rabin, M.: Efficient deniable authentication of long messages. In: International Conference on Theoretical Computer Science in Honor of Professor Manuel Blum’s 60th Birthday (1998)

  35. Dwork, C., Naor, M., Sahai A.: Concurrent zero-knowledge. In: Proceedings of the 30th ACM STOC’98, pp. 409–418, Dallas, TX (1998)

  36. Deng, X., Lee, C.H., Zhu, H.: Deniable authentication protocols. IEE Proc. Comput. Digit. Tech. Engl. 148(2), 101–104 (2001)

    Article  Google Scholar 

  37. Shao, Z.H.: Efficient deniable authentication protocol based on generalized ElGamal signature scheme. Comput. Stand. Interfaces 26(5), 449–454 (2004)

    Article  Google Scholar 

  38. Lee, W.B., Wu, C.C., Tsaur, W.J.: A novel deniable authentication protocol using generalized ElGamal signature scheme. Inf. Sci. 177, 1376–1381 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers Systems and Signal Processing, Bangalore, India. pp. 175–179. IEEE, New York (1984)

  40. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  41. Yu-Jing, Z., Xi-Ming, F., Fang, Z.: Preparation of N-qubit GHZ state with a hybrid quantum system based on nitrogen-vacancy centers. Chin. Phys. Lett. 30, 3–5 (2013)

    Google Scholar 

  42. Long, L.R., Zhou, P., Li, Z., Yin, C.L.: Multiparty joint remote preparation of an arbitrary GHZ-class state via positive operator-valued measurement. Int. J. Theor. Phys. 51(8), 2438–2446 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rong-Can, Y., Huang, Z.-P., Guo, Y.-Q.: Atomic GHZ states prepared in two directly coupled cavities with virtual excitations in one step. Commun. Theor. Phys. 4(56), 655–658 (2011)

    Google Scholar 

  44. Ma, S.-Y., Chen, X.-B., Tang, P.: Scheme for cloning a three-particle GHZ class state with assistance. Commun. Theor. Phys. 5(55), 771–774 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  45. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  46. Ekert, A.K.: Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67, 661–664 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Gottesman, D., Chuang, I.: Quantum digital signature. arXiv:quant-ph/0105032 (2001)

  48. Hwang, T., Lee, K.C.: EPR quantum key distribution protocols with 100% qubit efficiency. IET Inf. Secur. 1(1), 43–45 (2007)

    Article  Google Scholar 

  49. Chen, J.H., Lee, K.C., Hwang, T.: The enhancement of Zhou et al.’s quantum secret sharing protocol. Int. J. Mod. Phys. C 20(10), 1531–1535 (2009)

    Article  ADS  MATH  Google Scholar 

  50. Shih, H.C., Lee, K.C., Hwang, T.: New efficient three-party quantum key distribution protocols. IEEE J. Sel. Top. Quantum Electron. 15(6), 1602–1606 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61170270, 61170221, 61272044); The Specialized Research Fund for the Doctoral Program of Higher Education(Grant Nos. 20091103120014, 20090005110010); Beijing Natural Science Foundation(Grant Nos. 4122008.1102004); the ISN open Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Min Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, WM., Zhou, YH. & Yang, YG. Quantum deniable authentication protocol. Quantum Inf Process 13, 1501–1510 (2014). https://doi.org/10.1007/s11128-014-0743-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0743-9

Keywords

Navigation