Skip to main content
Log in

Asymmetric “4+2” protocol for quantum key distribution with finite resources

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we present an asymmetric “4+2” protocol for quantum key distribution with finite photon pulses. The main work of this paper focuses on the composable security proof for this protocol in a finite-key scenario. Based on the essence security basis of the original “4+2” protocol proposed by Huttner et al. (Phys Rev A 51(3):1863–1869, 1995), we first develop the squashing model for this protocol with the quantum non-demolition measure theory. From this model, against the collective photon-number-splitting attack, we then provide the security proof (formulas of finite-key security bounds) for this protocol. The expected performance of this protocol are also evaluated on a priori reasonable expected values of parameters. Our work shows that the performance we derived is the lower one and it can cover long distances in the lossy channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: Public-key distribution and coin tossing. In: Proceedings IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, pp. 175–179. IEEE, New York (1984)

  2. Gottesman, D., Lo, H.K., Lütkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. J. Quantum Inf. Comput. 5, 325–360 (2004)

    Google Scholar 

  3. Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504–230507 (2005)

    Google Scholar 

  4. Ma, X.F., Qi, B., Zhao, Y., Lo, H.K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72(1), 012326–012340 (2005)

    Article  ADS  Google Scholar 

  5. Ma, X.F., Fred Fung, C.H., Dupuis, F., Chen, K., Tamaki, K., Lo, H.-K.: Decoy state quantum key distribution with two-way classical post-processing. Phys. Rev. A 74(3), 032330–032345 (2006)

    Article  ADS  Google Scholar 

  6. Wang, X.B.: Secure and efficient decoy-state quantum key distribution with inexact pulse intensities. arXiv.org:quant-ph, 0609081 (2006)

  7. Wang, X.B., Peng, C.Z., Zhang, J., Y.L., Pan, J.W.: General theory of decoy-state quantum cryptography with source errors. Phys. Rev. A 77(4), 042311–042318 (2008)

  8. Wang, X.B., Yang, L., Peng, C.Z., Pan, J.W.: Decoy-state quantum key distribution with both source errors and statistical fluctuations. arXiv.org:quant-ph, 09024660 (2009)

  9. Xu, F.X., Zhang, Y., Zhou, Z., Chen, W., Han, Zf, Guo, G.C.: Experimental demonstration of counteracting imperfect sources in a practical one-way quantum-key-distribution system. Phys. Rev. A 80(6), 062309–062313 (2009)

    Article  ADS  Google Scholar 

  10. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time-pad. Phys. Rev. A 69(5), 052319–052322 (2004)

    Article  ADS  Google Scholar 

  11. Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70(1), 012311–012317 (2004)

    Article  ADS  Google Scholar 

  12. Lu, H., Fung, C.-H., Ma, X., Cai, Q-y: Unconditional security proof of a deterministic quantum key distribution with a two-way quantum channel. Phys. Rev. A 84(6), 042344–042355 (2011)

    Article  ADS  Google Scholar 

  13. Bennett, C.H.: Quantum cryptography using any two non-orthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Koashi, M.: Unconditional security of coherent-state quantum key distribution with a strong phase-reference pulse. Phys. Rev. Lett. 93(12), 120501–120504 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  15. Tamaki, K., Lütkenhaus, N., Koashi, M., Batuwantu-dawe, J.: Unconditional security of the Bennett 1992 quantum key-distribution scheme with strong reference pulse. Phys. Rev. A 80(3), 032302–032310 (2009)

    Article  ADS  Google Scholar 

  16. Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Phys. Rev. A 51(3), 1863–1869 (1995)

    Article  ADS  Google Scholar 

  17. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information Cambridge. Cambridge University Press, UK (2000)

    Google Scholar 

  18. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst. Sci. 19, 143–154 (1979)

    Article  MathSciNet  Google Scholar 

  19. Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication and set equality. Comput. Syst. Sci 22(3), 265–279 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lo, H.K., Chau, H.F., Ardehali, M.: Efficient quantum key distribution. arXiv.org:quant -ph, 9803007 (1998)

  21. Dusek, M., Läutkenhaus, N., Hendrych, M.: Quantum cryptography. Prog. Opt. 49, 381–454 (2006)

    Article  Google Scholar 

  22. Derka, R., Buzk, V., Ekert, A.K.: Universal algorithm for optimal estimation of quantum states from finite ensembles via realizable generalized measurement. Phys. Rev. Lett. 80(8), 1571–1575 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Csiszar, I., KÄorner, J.: Broadcast channels with confidential messages. IEEE Trans. Inf. Theory. 24(3), 339–348 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tsurumaru, T., Tamaki, K.: Security proof for quantum-key-distribution systems with threshold detectors. Phys. Rev. A 78(3), 032302–032309 (2008)

    Article  ADS  Google Scholar 

  25. Beaudry, N.J., Moroder, T., Lutkenhaus, N.: Squashing models for optical measurements in quantum communication. Phys. Rev. Lett. 101(9), 093601–093604 (2008)

    Article  ADS  Google Scholar 

  26. Mayers, D.: Advances in Cryptology-Proceedings of Crypto. Springer, Berlin (1996)

    Google Scholar 

  27. Inamori, H., Lütkenhaus, N., Mayers, D.: Unconditional security of practical quantum key distribution. Eur. J. Phys. D. 41(3), 599–627 (2007)

    Article  ADS  Google Scholar 

  28. KÄonig, R., Renner, R., Bariska, A., Maurer, U.: Small accessible quantum information does not imply security. Phys. Rev. Lett. 98(14), 140502–140505 (2007)

    Article  Google Scholar 

  29. Wang, X.B.: Quantum error correction in spatially correlated quantum noise. Phys. Rev. Lett. 95(23), 230503–230506 (2005)

    Article  Google Scholar 

  30. Meyer, T., Kampermann, H., Kleinmann, M., Bru\(\beta \), D.: Finite key analysis for symmetric attacks in quantum key distribution. Phys. Rev. A 74(4), 042340–042348 (2006)

    Google Scholar 

  31. Hayashi, M.: Upper bounds of eavesdropper’s performances in finite-length code with the decoy method. Phys. Rev. A 76(1), 012329–012344 (2007)

    Article  ADS  Google Scholar 

  32. Hasegawa, J., Hayashi, M., Hiroshima, T., Tanaka, A., Tomita, A.: Experimental decoy state quantum key distribution with unconditional security incorporating finite statistics. arXiv.org:quant-ph, 0705.3081 (2007)

  33. Scarani, V., Renner, R.: Quantum cryptography with finite resources: Unconditional security bound for discrete-variable protocols with one-way postprocessing. Phys. Rev. Lett. 100(20), 200501–200504 (2008)

    Article  ADS  Google Scholar 

  34. Scarani, V., Renner, R.: Security bounds for quantum cryptography with finite resources, arXiv.org:quant-ph, 0806.0120 (2008)

  35. Renner, R.: Security of quantum key distribution, PhD thesis, Diss. ETH No. 16242, Int. J. Quant. Inf 61 (2008)

  36. Raymond, Cai, Q.Y., Scarani, V.: Finite-key analysis for practical implementations of quantum key distribution. New. J. Phys. 11(4), 045024 (2009)

    Article  Google Scholar 

  37. Kraus, B., Gisin, N., Renner, R.: Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication. Phys. Rev. Lett. 95(8), 080501–080504 (2008)

    Article  Google Scholar 

  38. Devetak, I., Winter, A.: Distillation of secret key and entanglement from quantum states. Proc. R. Soc. Lond. A. 461(2053), 207–235 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Cover, T.M., Thomas, J.A.: Elements of Information Theory, Wiley Series in Telecommunications. Wiley, New York (1991)

    Book  Google Scholar 

  40. Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122km of standard telecom fiber. Appl. Phys. Lett. 84(19), 3762–3674 (2004)

    Article  ADS  Google Scholar 

  41. Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94(23), 230503–230506 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (No. 11374096), the Education Ministry of Hunan province (No. 11A096), the Doctor Foundation (No. jsdxrcyjkyxm201104) and the Foundation (No. jd12039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuoDong Kang.

Appendix

Appendix

As shown in Fig. 1, the process of coherent pulses preparation (by Alice) and measurement (by Bob) states the following: The relatively strong coherent pulse \(\left| {\hbox {e}^{i\theta _0 }\sqrt{3\mu _1 }} \right\rangle \) in the path 0 is described by a field operator \(a_0^\dagger \). The transformation for \(a_0^\dagger \) in terms of the creation operators \(a_1^\dagger \) and \(a_2^\dagger \) of the upper and lower paths (labeled by 1 and 2, respectively) is

$$\begin{aligned} a_0^\dagger \rightarrow ^{BS_1 }\hbox {e}^{i\theta _1 }\frac{\sqrt{3}}{3}a_1^\dagger +\frac{\sqrt{6}}{3}a_2^\dagger . \end{aligned}$$
(19)

The transformation for \(a_2^\dagger \) in terms of the creation operators \(a_3^\dagger \) and \(a_4^\dagger \) (operators of BS\(_{2}\) for the paths 3 and 4) is

$$\begin{aligned} a_2^\dagger \rightarrow ^{BS_2 }\hbox {e}^{i\theta _2 }\frac{1}{\sqrt{2}}a_3^\dagger +\frac{1}{\sqrt{2}}a_4^\dagger . \end{aligned}$$
(20)

While the transformations for the operators \(a_1^\dagger \) and \(a_3^\dagger \) in terms of the creation operators \(a_5^\dagger \) and \(a_6^\dagger \) (operators of the BS3 for the paths 5 and 6) is, respectively, given by

$$\begin{aligned} a_1^\dagger \rightarrow ^{BS_3 }\hbox {e}^{i\theta _3} \frac{1}{\sqrt{2}}a_5^\dagger +\frac{1}{\sqrt{2}}a_6^\dagger . \end{aligned}$$
(21)
$$\begin{aligned} a_3^\dagger \rightarrow ^{BS_3 }\frac{1}{\sqrt{2}}a_5^\dagger -\hbox {e}^{-i\theta _3 }\frac{1}{\sqrt{2}}a_6^\dagger . \end{aligned}$$
(22)

Where \(\theta _1, \theta _2, \theta _3\) represent, respectively, the phase shift due to beam splitter reflection (for simplicity, another term of phase shift due to path length and the transmission in beam splitters are neglected). From the above discussion, we obtain the transformation operator of the QKD system:

$$\begin{aligned} \frac{1}{\sqrt{2}}\left[ \hbox {e}^{i(\theta _1 +\theta _3 +\phi _A )}+\hbox {e}^{i(\theta _2 +\phi _B )}\right] a_5^\dagger +\frac{1}{\sqrt{2}}[\hbox {e}^{i(\theta _1 +\phi _A )}-\hbox {e}^{i(\theta _2 -\theta 3+\phi _B )}]a_6^\dagger , \end{aligned}$$
(23)

where beam splitters are chosen such that the phase shift in the upper path compensates the phase shift in the lower path(\(\theta _1 +\theta _3 =\theta _2 )\). Then, if Alice prepares the state \(\left| {\hbox {e}^{i\theta _0 }\sqrt{3\mu _1 }} \right\rangle \) in the path 0, the outgoing state \(\left| {\psi _{lj}^{\prime } } \right\rangle \) in the paths 5 and 6 is given by

$$\begin{aligned}&\left| {\psi _{lj}^{\prime } } \right\rangle =\left| {\frac{1}{\sqrt{2}}\left[ \hbox {e}^{i(\theta _1 +\theta _3 +\phi _{A_j } )}+\hbox {e}^{i(\theta _2 +\phi _{B_j } )}\right] \sqrt{\mu _1 }} \right\rangle _5 \nonumber \\&\left| {\frac{1}{\sqrt{2}}[\hbox {e}^{i(\theta _1 +\phi _{A_j } )}-\hbox {e}^{i(\theta _2 -\theta _3 +\phi _{B_j } )}]\sqrt{\mu _1 }} \right\rangle _6, \end{aligned}$$
(24)

where \(\phi _{A_j }\) and \(\phi _{B_j}\) represents, respectively, the encoding phase modulation (used by Alice) and the decoding phase modulation (used by Bob). The outgoing state can also be written in the form

$$\begin{aligned}&\left| {\psi _{lj}^{\prime } } \right\rangle =\left| {\hbox {e}^{i\left( \frac{\theta _1 +\theta _2 +\theta _3 +\phi _{A_j } +\phi _{B_j } }{2}\right) }\cos \left( \frac{\Delta \phi }{2}\right) \sqrt{2\mu _1 }} \right\rangle _5,\end{aligned}$$
(25)
$$\begin{aligned}&\left| {\psi _{lj}^{\prime } } \right\rangle =\left| {\hbox {e}^{i\left( \frac{\theta _1 +\theta _2 -\theta _3 +\phi _{A_j } +\phi _{B_j } }{2}\right) }\sin \left( \frac{\Delta \phi }{2}\right) \sqrt{2\mu _1 }} \right\rangle _6, \end{aligned}$$
(26)

where \(\Delta \phi =\phi _{A_j } -\phi _{B_j }\) means the inner phase shift of two-beam interference. The state of the RP that enters D(2) is \(\left| {\hbox {e}^{i\theta _0 }\sqrt{\mu _1 }} \right\rangle \). It is easy to figure out that clicks will occur in detector D(0) if \(\phi _{A_j } =0, \phi _{B_j } =0\) or \(\phi _{A_j } =\pi /2, \phi _{B_j} =\pi /2\) and other results can be similarly obtained, while there will be random clicks in D(0) or D(1) with equal probability for the cases that unmatched phases for decoding are used by Bob and the corresponding bits will be discarded in key sifting procedures. From the above discussion, the specific form of the POVM elements for both the full optical measurement and the equivalent squashing model can be obtained.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, G., Zhou, Q., Fang, M. et al. Asymmetric “4+2” protocol for quantum key distribution with finite resources. Quantum Inf Process 13, 5–20 (2014). https://doi.org/10.1007/s11128-013-0684-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0684-8

Keywords

Navigation