Skip to main content
Log in

Secret sharing based on quantum Fourier transform

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Secret sharing plays a fundamental role in both secure multi-party computation and modern cryptography. We present a new quantum secret sharing scheme based on quantum Fourier transform. This scheme enjoys the property that each share of a secret is disguised with true randomness, rather than classical pseudorandomness. Moreover, under the only assumption that a top priority for all participants (secret sharers and recovers) is to obtain the right result, our scheme is able to achieve provable security against a computationally unbounded attacker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS, p. 313. IEEE Computer Society (1979)

  3. Scherpelz, P., Resch, R., Berryrieser, D., Lynn, T.W.: Entanglement-secured single-qubit quantum secret sharing. Phys. Rev. A 84(3), 032303 (2011)

    Article  ADS  Google Scholar 

  4. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1999 (1829)

    Google Scholar 

  5. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61(4), 042311 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  6. Nascimento, A.C.A., Mueller-Quade, J., Imai, H.: Improving quantum secret-sharing schemes. Phys. Rev. A 64(4), 042311 (2001)

    Article  ADS  Google Scholar 

  7. Tyc, T., Sanders, B.C.: How to share a continuous-variable quantum secret by optical interferometry. Phys. Rev. A 65(4), 042310 (2002)

    Article  ADS  Google Scholar 

  8. Crépeau, C., Gottesman, D., Smith, A.: Secure multi-party quantum computation. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, pp. 643–652. ACM (2002)

  9. Hsu, L.Y.: Quantum secret-sharing protocol based on grovers algorithm. Phys. Rev. A 68(2), 022306 (2003)

    Article  ADS  Google Scholar 

  10. Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92(17), 177903 (2004)

    Article  ADS  Google Scholar 

  11. Tokunaga, Y., Okamoto, T., Imoto, N.: Threshold quantum cryptography. Phys. Rev. A 71(1), 012314 (2005)

    Article  ADS  Google Scholar 

  12. Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78(4), 042309 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  13. Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)

    Article  ADS  Google Scholar 

  14. Dolev, S., Pitowsky I., Tamir, B.: A Quantum Secret Ballot. arXiv, preprint quant-ph/0602087 (2006)

  15. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman & Hall, Boca Raton (2008)

    MATH  Google Scholar 

  16. Goldreich, O.: Secure Multi-Party Computation. Working Draft. Version 1.3 (2001)

  17. Nielsen, M.A., Chuang, I., Grover, L.K.: Quantum computation and quantum information. Am. J. Phys. 70, 558 (2002)

    Google Scholar 

  18. Weinstein, Y.S., Pravia, M.A., Fortunato, E.M., Lloyd, S., Cory, D.G.: Implementation of the quantum fourier transform. Phys. Rev. Lett. 86(9), 1889–1891 (2001)

    Article  ADS  Google Scholar 

  19. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)

    Article  ADS  Google Scholar 

  20. Shor, P.W., Preskill, J.: Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

  21. Mayers, D.: Unconditional security in quantum cryptography. J. ACM (JACM) 48(3), 351–406 (2001)

    Article  MathSciNet  Google Scholar 

  22. Lo, H.K., Chau, H.F., Ardehali, M.: Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18(2), 133–165 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Holevo, A.S.: Bounds for the quantity of information transmitted by a quantum communication channel. Probl. Pered. Inform. 9(3), 3–11 (1973)

    MathSciNet  MATH  Google Scholar 

  24. Csirmaz, L.: The size of a share must be large. J. Cryptol. 10(4), 223–231 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jeffrey, A., Dai, H.H.: Handbook of Mathematical Formulas and Integrals. Academic Press, London (2008)

    MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous reviewer for helpful suggestions. This work was supported by the National Natural Science Foundation of China (No. 60903217), the Fundamental Research Funds for the Central Universities (No. WK0110000027), and the Natural Science Foundation of Jiangsu Province of China (No. BK2011357).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yang.

Appendix: Proof of Equation (8)

Appendix: Proof of Equation (8)

The case that \(\zeta =N\) if \(K = 0\) mod \(N\) is obvious, thus we only focus on the proof of \(\zeta =0\) if \(K \ne 0\) mod \(N\). When \(K \ne 0\) mod \(N\), we know that

$$\begin{aligned} \zeta =\sum _{j=0}^{N-1} e^{\frac{2\pi ij}{N}K} \end{aligned}$$
(11)

Let \(\frac{2\pi K}{N}=t\), then Eq. (11) can be rewritten as

$$\begin{aligned} \zeta =\sum _{j=0}^{N-1} e^{ijt}=\sum _{j=0}^{N-1} \cos {jt}+i\sum _{j=0}^{N-1} \sin {jt} \end{aligned}$$
(12)

It is not hard to verify and prove the following two Lagrange’s trigonometric identities [25]:

$$\begin{aligned} \sum _{n=0}^{N} \cos {n\theta }=-\frac{1}{2}+\frac{\sin {\left(N+\frac{1}{2}\right)\theta }}{2\sin {\frac{1}{2}\theta }} \end{aligned}$$
(13)

and

$$\begin{aligned} \sum _{n=0}^{N} \sin {n\theta }=\frac{\cos {\frac{1}{2}\theta }-\cos {\left(N+\frac{1}{2}\right)\theta }}{2\sin {\frac{1}{2}\theta }} \end{aligned}$$
(14)

Now we consider the first item of the right side of Eq. (12) using (13):

$$\begin{aligned} \sum _{j=0}^{N-1} \cos {jt}&= \sum _{j=1}^{N} \cos {jt}-\cos {Nt}+\cos {0}=\sum _{j=1}^{N} \cos {jt}\nonumber \\&= -\frac{1}{2}+\frac{\sin {\left(N+\frac{1}{2}\right)t}}{2\sin {\frac{1}{2}t}}\nonumber \\&= -\frac{1}{2}+\frac{\sin \left({2\pi K +\frac{\pi K}{N}}\right)}{2\sin {\frac{\pi K}{N}}}\nonumber \\&= -\frac{1}{2}+\frac{\sin {\frac{\pi K}{N}}}{2\sin {\frac{\pi K}{N}}}=0 \end{aligned}$$
(15)

The last step of (15) holds iff \(K \ne 0\) mod \(N\).

Similarly, we can get that \(\sum _{j=0}^{N-1} \sin {jt}=0\) using (14) with \(K \ne 0\) mod \(N\).

So far, we can safely reach the conclusion that \(\zeta =0\) iff \(K \ne 0\) mod \(N\) and thus Eq. (8) follows.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, W., Huang, L., Shi, R. et al. Secret sharing based on quantum Fourier transform. Quantum Inf Process 12, 2465–2474 (2013). https://doi.org/10.1007/s11128-013-0534-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0534-8

Keywords

Navigation