Skip to main content
Log in

An improved formalism for quantum computation based on geometric algebra—case study: Grover’s search algorithm

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The Grover search algorithm is one of the two key algorithms in the field of quantum computing, and hence it is desirable to represent it in the simplest and most intuitive formalism possible. We show firstly, that Clifford’s geometric algebra, provides a significantly simpler representation than the conventional bra-ket notation, and secondly, that the basis defined by the states of maximum and minimum weight in the Grover search space, allows a simple visualization of the Grover search analogous to the precession of a spin-\({\frac{1}{2}}\) particle. Using this formalism we efficiently solve the exact search problem, as well as easily representing more general search situations. We do not claim the development of an improved algorithm, but show in a tutorial paper that geometric algebra provides extremely compact and elegant expressions with improved clarity for the Grover search algorithm. Being a key algorithm in quantum computing and one of the most studied, it forms an ideal basis for a tutorial on how to elucidate quantum operations in terms of geometric algebra—this is then of interest in extending the applicability of geometric algebra to more complicated problems in fields of quantum computing, quantum decision theory, and quantum information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grover, L.: A framework for fast quantum mechanical algorithms. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, ACM, pp. 53–62 (1998)

  2. Grover L.: Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett. 80(19), 4329–4332 (1998)

    Article  ADS  Google Scholar 

  3. Grover L.: From schrödingers equation to the quantum search algorithm. Am. J. Phys. 69(7), 769–777 (2001)

    Article  ADS  Google Scholar 

  4. Grover L.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325–328 (1997)

    Article  ADS  Google Scholar 

  5. Nielsen M., Chuang I.: Quantum Computation and Quantum Information, 1st edn. Addison-Wesley, Cambridge (2002)

    Google Scholar 

  6. Ng J., Abbott D.: Introduction to solid-state quantum computation for engineers. Microelectron. J. 33(1–2), 171–177 (2002)

    Article  Google Scholar 

  7. Chappell J., Iqbal A., Lohe M., Von Smekal L.: An analysis of the quantum penny flip game using geometric algebra. J. Phys. Soc. Jpn. 78(5), 54801–54804 (2009)

    Article  ADS  Google Scholar 

  8. Long G., Tu C., Li Y., Zhang W., Yan H.: An SO(3) picture for quantum searching. J. Phys. A Math. Gen. 34(4), 861–866 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Alves R., Lavor C.: Clifford algebra applied to Grover’s algorithm. Adv. Appl. Clifford Algebras 20, 477–488 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Somaroo S., Cory D., Havel T.: Expressing the operations of quantum computing in multiparticle geometric algebra. Phys. Lett. A 240(1–2), 1–7 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Gregorič M, Mankoč Borštnik N.: Quantum gates and quantum algorithms with clifford algebra techniques. Int. J. Theor. Phys. 48(2), 507–515 (2009)

    Article  MATH  Google Scholar 

  12. Hestenes D., Sobczyk G.: Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics, vol. 5. Springer, Berlin (1984)

    Book  Google Scholar 

  13. Hestenes, D.: Clifford Algebras and Their Applications in Mathematical Physics (Reidel, Dordrecht/Boston, 1986), chap. Clifford Algebra and the interpretation of quantum mechanics (1986)

  14. Aerts D., Czachor M.: Cartoon computation: quantum-like computing without quantum mechanics. J. Phys. A Math. Theor. 40(13), F259 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Aerts D., Czachor M.: Tensor-product versus geometric-product coding. Phys. Rev. A 77, 012316 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  16. Aerts D., Czachor M., Orlowski L.: Teleportation of geometric structures in 3D. J. Phys. A Math. Theor. 42(13), 135307 (2009)

    Article  ADS  Google Scholar 

  17. Vlasov, A.Y.: eprint arXiv:quant-ph/9907079 (1999)

  18. Vlasov A.Y.: Clifford algebras and universal sets of quantum gates. Phys. Rev. A 63, 054302 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  19. Chappell J.M., Iqbal A., Abbott D.: N-player quantum games in an EPR setting. PLoS ONE 7(5), e36404 (2012)

    Article  ADS  Google Scholar 

  20. Hsieh J., Li C.: General su(2) formulation for quantum searching with certainty. Phys. Rev. A 65, 052322 (2002)

    Article  ADS  Google Scholar 

  21. Doran C., Lasenby A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  22. De Sabbata V., Datta B.: Geometric Algebra and Applications to Physics. Taylor & Francis Group, London (2007)

    MATH  Google Scholar 

  23. Parker R., Doran C.: Analysis of One and Two Particle Quantum Systems Using Geometric Algebra, pp. 213–226. Birkhäuser, Boston, MA (2002)

    Google Scholar 

  24. Li C., Hwang C., Hsieh J., Wang K.: General phase-matching condition for a quantum searching algorithm. Phys. Rev. A 65(3), 034305 (2002)

    Article  ADS  Google Scholar 

  25. Long G., Li Y., Zhang W., Niu L.: Phase matching in quantum searching. Phys. Lett. A 262(1), 27–34 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Zalka C.: Grover’s quantum searching algorithm is optimal. Phys. Rev. A 60, 2746–2751 (1999)

    Article  ADS  Google Scholar 

  27. Boyer M., Brassard G., Høyer P., Tappa A.: Tight bounds on quantum searching. Fortsch. Phys. 46/49, 493–506 (1998)

    Article  ADS  Google Scholar 

  28. Shapira D., Shimoni Y., Biham O.: Algebraic analysis of quantum search with pure and mixed states. Phys. Rev. A 71, 042320 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  29. Biham E., Biham O., Biron D., Grassl M., Lidar D.A., Shapira D.: Analysis of generalized Grover quantum search algorithms using recursion equations. Phys. Rev. A 63, 012310 (2000)

    Article  ADS  Google Scholar 

  30. Høyer P.: Arbitrary phases in quantum amplitude amplification. Phys. Rev. A 62(5), 052304–052309 (2000)

    Article  ADS  Google Scholar 

  31. Brassard, G., Hoyer, P.: An exact quantum polynomial-time algorithm for simon’s problem. In: Proceedings of the 5th Israeli Symposium on Theory of Computing and Systems ISTCS, pp. 12–23 (1997)

  32. Biham E., Biham O., Biron D., Grassl M., Lidar D.: Grover’s quantum search algorithm for an arbitrary initial amplitude distribution. Phys. Rev. A 60(4), 2742 (1999)

    Article  ADS  Google Scholar 

  33. Biham E., Kenigsberg D.: Grover’s quantum search algorithm for an arbitrary initial mixed state. Phys. Rev. A 66, 062301 (2002)

    Article  ADS  Google Scholar 

  34. Korepin V.E., Vallilo B.C.: Group theoretical formulation of a quantum partial search algorithm. Prog. Theor. Phys. 116, 783–793 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Grover L.K.: Fixed-point quantum search. Phys. Rev. Lett. 95, 150501–150504 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Chappell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chappell, J.M., Iqbal, A., Lohe, M.A. et al. An improved formalism for quantum computation based on geometric algebra—case study: Grover’s search algorithm. Quantum Inf Process 12, 1719–1735 (2013). https://doi.org/10.1007/s11128-012-0483-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0483-7

Keywords

Navigation