Skip to main content

Controlling quantum information processing in hybrid systems on chips

Abstract

We investigate quantum information processing, transfer and storage in hybrid systems comprised of diverse blocks integrated on chips. Strong coupling between superconducting (SC) qubits and ensembles of ultracold atoms or NV-center spins is mediated by a microwave transmission-line resonator that interacts near-resonantly with the atoms or spins. Such hybrid devices allow us to benefit from the advantages of each block and compensate for their disadvantages. Specifically, the SC qubits can rapidly implement quantum logic gates, but are “noisy” (prone to decoherence), while collective states of the atomic or spin ensemble are “quiet”(protected from decoherence) and thus can be employed for storage of quantum information. To improve the overall performance (fidelity) of such devices we discuss dynamical control to optimize quantum state-transfer from a “noisy” qubit to the “quiet” storage ensemble. We propose to maximize the fidelity of transfer and storage in a spectrally inhomogeneous spin ensemble, by pre-selecting the optimal spectral portion of the ensemble. Significant improvements of the overall fidelity of hybrid devices are expected under realistic conditions. Experimental progress towards the realization of these schemes is discussed.

References

  1. Andre A. et al.: Polar molecules near superconducting resonators: a coherent, all-electrical atom-mesocopic interface. Nat. Phys. 2, 636 (2006)

    Article  Google Scholar 

  2. Rabl P. et al.: Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits. Phys. Rev. Lett. 97(3), 033003 (2006)

    ADS  Article  Google Scholar 

  3. Tordrup Karl, Mølmer Klaus: Quantum computing with a single molecular ensemble and a cooper-pair box. Phys. Rev. A 77(2), 020301 (2008)

    ADS  Article  Google Scholar 

  4. Schoelkopf R.J., Girvin S.M.: Wiring up quantum systems. Nature 451, 664 (2008)

    ADS  Article  Google Scholar 

  5. Petrosyan D., Fleischhauer M.: Quantum information processing with single photons and atomic ensembles in microwave coplanar waveguide resonators. Phys. Rev. Lett. 100, 170501 (2008)

    ADS  Article  Google Scholar 

  6. Petrosyan D. et al.: Reversible state transfer between superconducting qubits and atomic ensembles. Phys. Rev. A 79(4), 040304(R) (2009)

    ADS  Article  Google Scholar 

  7. Wallquist M. et al.: Hybrid quantum devices and quantum engineering. Phys. Scr. t137, 014001 (2009)

    ADS  Article  Google Scholar 

  8. Imamoglu A.: Cavity qed based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems. Phys. Rev. Lett. 102(8), 083602 (2009)

    ADS  Article  Google Scholar 

  9. Verdú J. et al.: Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity. Phys. Rev. Lett. 103(4), 043603 (2009)

    ADS  Article  Google Scholar 

  10. Devoret M.H., Martinis J.M.: Implementing qubits with superconducting integrated circuits. Quantum Inf. Process. 3, 163–203 (2004)

    MATH  Article  Google Scholar 

  11. You J.Q., Nori F.: Superconducting circuits and quantum information. Phys. Today 58(11), 42–47 (2005)

    Article  Google Scholar 

  12. Makhlin Y., Schön G., Shnirman A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73(2), 357–400 (2001)

    ADS  Article  Google Scholar 

  13. You J.Q., Nori F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589 (2011)

    ADS  Article  Google Scholar 

  14. Duan L.-M., Monroe C.: Colloquium: quantum networks with trapped ions. Rev. Mod. Phys. 82(2), 1209–1224 (2010)

    ADS  Article  Google Scholar 

  15. Taylor J.M., Marcus C.M., Lukin M.D.: Long-lived memory for mesoscopic quantum bits. Phys. Rev. Lett. 90(20), 206803 (2003)

    ADS  Article  Google Scholar 

  16. Fleischhauer M., Lukin M.D.: Quantum memory for photons: dark-state polaritons. Phys. Rev. A 65(2), 022314 (2002)

    ADS  Article  Google Scholar 

  17. Lukin M.D.: Colloquium: trapping and manipulating photon states in atomic ensembles. Rev. Mod. Phys. 75(2), 457–472 (2003)

    ADS  Article  Google Scholar 

  18. Zhao B. et al.: A millisecond quantum memory for scalable quantum networks. Nat. Phys. 5, 95 (2009)

    Article  Google Scholar 

  19. Dudin Y.O., Zhao R., Kennedy T.A.B., Kuzmich A.: Light storage in a magnetically dressed optical lattice. Phys. Rev. A 81(4), 041805 (2010)

    ADS  Article  Google Scholar 

  20. Deutsch C. et al.: Spin self-rephasing and very long coherence times in a trapped atomic ensemble. Phys. Rev. Lett. 105(2), 020401 (2010)

    ADS  Article  Google Scholar 

  21. Gurudev Dutt M.V. et al.: Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316(5829), 1312–1316 (2007)

    Article  Google Scholar 

  22. Taylor J.M. et al.: High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phys. 4, 810–816 (2008)

    Article  Google Scholar 

  23. Acosta V.M. et al.: Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications. Phys. Rev. B 80(11), 115202 (2009)

    ADS  Article  Google Scholar 

  24. Stanwix P.L. et al.: Coherence of nitrogen-vacancy electronic spin ensembles in diamond. Phys. Rev. B 82(20), 201201 (2010)

    ADS  Article  Google Scholar 

  25. Blais A. et al.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69(6), 062320 (2004)

    ADS  Article  Google Scholar 

  26. Gallagher T.F.: Rydberg Atoms. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  27. Brune M., Raimond J.-M., Haroche S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  28. Henschel K., Majer J., Schmiedmayer J., Ritsch H.: Cavity qed with an ultracold ensemble on a chip: prospects for strong magnetic coupling at finite temperatures. Phys. Rev. A 82(3), 033810 (2010)

    ADS  Article  Google Scholar 

  29. Nirrengarten T. et al.: Realization of a superconducting atom chip. Phys. Rev. Lett. 97(20), 200405 (2006)

    ADS  Article  Google Scholar 

  30. Mukai T. et al.: Persistent supercurrent atom chip. Phys. Rev. Lett. 98(26), 260407 (2007)

    ADS  Article  Google Scholar 

  31. Roux C. et al.: Bose-Einstein condensation on a superconducting atom chip. Europhys. Lett. 81, 56004 (2008)

    ADS  Article  Google Scholar 

  32. Kasch B. et al.: Cold atoms near superconductors: atomic spin coherence beyond the Johnson noise limit. New J. Phys. 12, 065024 (2010)

    ADS  Article  Google Scholar 

  33. Hufnagel Ch., Mukai T., Shimizu F.: Stability of a superconductive atom chip with presistent current. Phys. Rev. A 79, 053641 (2009)

    ADS  Article  Google Scholar 

  34. Emmert A. et al.: Measurement of the trapping lifetime close to a cold metallic surface on a cryogenic atom–chip. Eur. Phys. J. D 51, 173 (2009)

    ADS  Article  Google Scholar 

  35. Meek S.A., Conrad H., Meijer G.: Trapping molecules on a chip. Science 324, 1699–1702 (2009)

    ADS  Article  Google Scholar 

  36. Schuster D.I. et al.: High-cooperativity coupling of electron-spin ensembles to superconducting cavities. Phys. Rev. Lett. 105(14), 140501 (2010)

    ADS  Article  Google Scholar 

  37. Kubo Y. et al.: Strong coupling of a spin ensemble to a superconducting resonator. Phys. Rev. Lett. 105(14), 140502 (2010)

    MathSciNet  ADS  Article  Google Scholar 

  38. Amsüss R. et al.: Cavity qed with magnetically coupled collective spin states. Phys. Rev. Lett. 107(6), 060502 (2011)

    ADS  Article  Google Scholar 

  39. Wu H. et al.: Storage of multiple coherent microwave excitations in an electron spin ensemble. Phys. Rev. Lett. 105(14), 140503 (2010)

    ADS  Article  Google Scholar 

  40. Bushev P. et al.: Ultralow-power spectroscopy of a rare-earth spin ensemble using a superconducting resonator. Phys. Rev. B 84(6), 060501 (2011)

    ADS  Article  Google Scholar 

  41. Reichel, J., Vuletic, V. (eds): Atom Chips. Wiley, VCH (2011)

    Google Scholar 

  42. Roos I., Mølmer K.: Quantum computing with an inhomogeneously broadened ensemble of ions: Suppression of errors from detuning variations by specially adapted pulses and coherent population trapping. Phys. Rev. A 69(2), 022321 (2004)

    ADS  Article  Google Scholar 

  43. Tordrup K., Mølmer K.: Quantum-state reconstruction with imperfect rotations on an inhomogeneously broadened ensemble of qubits. Phys. Rev. A 75(4), 042318 (2007)

    ADS  Article  Google Scholar 

  44. Wesenberg J.H., Kurucz Z., Mølmer K.: Dynamics of the collective modes of an inhomogeneous spin ensemble in a cavity. Phys. Rev. A 83(2), 023826 (2011)

    ADS  Article  Google Scholar 

  45. Hahn E.L.: Spin echoes. Phys. Rev. 80(8), 580–594 (1950)

    ADS  MATH  Article  Google Scholar 

  46. Nilsson M., Kröll S.: Solid state quantum memory using complete absorption and re-emission of photons by tailored and externally controlled inhomogeneous absorption profiles. Opt. Commun. 247(4–6), 393–403 (2005)

    ADS  Article  Google Scholar 

  47. Alexander A.L., Longdell J.J., Sellars M.J., Manson N.B.: Photon echoes produced by switching electric fields. Phys. Rev. Lett. 96(4), 043602 (2006)

    ADS  Article  Google Scholar 

  48. Wallraff A. et al.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004)

    ADS  Article  Google Scholar 

  49. Majer J. et al.: Coupling superconducting qubits via a cavity bus. Nature 449, 443–447 (2007)

    ADS  Article  Google Scholar 

  50. Sillanpaa M.A., Park J.I., Simmonds R.W.: Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 438–442 (2007)

    ADS  Article  Google Scholar 

  51. Brennecke F. et al.: Cavity qed with a Bose-Einstein condensate. Nature 450, 268–271 (2007)

    ADS  Article  Google Scholar 

  52. Mariantoni M. et al.: Photon shell game in three-resonator circuit quantum electrodynamics. Nat. Phys. 7, 287 (2011)

    Article  Google Scholar 

  53. Houck A.A. et al.: Controlling the spontaneous emission of a superconducting transmon qubit. Phys. Rev. Lett. 101, 080502 (2008)

    ADS  Article  Google Scholar 

  54. Clausen J., Bensky G., Kurizki G.: Bath-optimized minimal-energy protection of quantum operations from decoherence. Phys. Rev. Lett. 104(4), 040401 (2010)

    ADS  Article  Google Scholar 

  55. Gordon G., Kurizki G., Lidar D.A.: Optimal dynamical decoherence control of a qubit. Phys. Rev. Lett. 101(1), 010403 (2008)

    ADS  Article  Google Scholar 

  56. Wu L.A., Kurizki G., Brumer P.: Master equation and control of an open quantum system with leakage. Phys. Rev. Lett. 102, 080405 (2009)

    ADS  Article  Google Scholar 

  57. Wu L.-A., Byrd M.S., Lidar D.A.: Polynomial-time simulation of pairing models on a quantum computer. Phys. Rev. Lett. 89, 057904 (2002)

    MathSciNet  ADS  Article  Google Scholar 

  58. Byrd M.S., Wu L-A., Lidar D.A.: Overview of quantum error prevention and leakage elimination. J. Mod. Opt. 51, 2449 (2004)

    ADS  MATH  Article  Google Scholar 

  59. Byrd M.S., Lidar D.A., Wu L-A., Zanardi P.: Universal leakage elimination. Phys. Rev. A 71, 052301 (2005)

    ADS  Article  Google Scholar 

  60. Lidar D.A.: Towards fault tolerant adiabatic quantum computation. Phys. Rev. Lett. 100, 160506 (2008)

    ADS  Article  Google Scholar 

  61. Kofman A.G., Kurizki G.: Unified theory of dynamically suppressed qubit decoherence in thermal baths. Phys. Rev. Lett. 93(13), 130406 (2004)

    ADS  Article  Google Scholar 

  62. Kofman A.G., Kurizki G.: Universal dynamical control of quantum mechanical decay: Modulation of the coupling to the continuum. Phys. Rev. Lett. 87, 270405 (2001)

    Article  Google Scholar 

  63. Kofman A.G., Kurizki G.: Acceleration of quantum decay processes by frequent observations. Nature (London) 405, 546 (2000)

    ADS  Article  Google Scholar 

  64. Gordon G., Erez N., Kurizki G.: Universal dynamical decoherence control of noisy single- and multi-qubit systems. J. Phys. B 40(9), S75 (2007)

    MathSciNet  ADS  Article  Google Scholar 

  65. Gordon G., Kurizki G.: Universal dephasing control during quantum computation. Phys. Rev. A 76(4), 042310 (2007)

    ADS  Article  Google Scholar 

  66. Breuer H.P., Petruccione F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  67. Viola L., Knill E., Lloyd S.: Dynamical generation of noiseless quantum subsystems. Phys. Rev. Lett. 85(16), 3520–3523 (2000)

    ADS  Article  Google Scholar 

  68. Viola L., Knill E., Lloyd S.: Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82(12), 2417–2421 (1999)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  69. Viola L., Lloyd S.: Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58(4), 2733–2744 (1998)

    MathSciNet  ADS  Article  Google Scholar 

  70. Vitali D., Tombesi P.: Heating and decoherence suppression using decoupling techniques. Phys. Rev. A 65(1), 012305 (2001)

    ADS  Article  Google Scholar 

  71. Uhrig G.S.: Keeping a quantum bit alive by optimized π-pulse sequences. Phys. Rev. Lett. 98(10), 100504 (2007)

    ADS  Article  Google Scholar 

  72. Kofman A.G., Kurizki G.: Quantum Zeno effect on atomic excitation decay in resonators. Phys. Rev. A 54(5), R3750–R3753 (1996)

    ADS  Article  Google Scholar 

  73. Abragam A.: The Principles of Nuclear Magnetism. Oxford University Press, Oxford, England (1961)

    Google Scholar 

  74. Allen L., Eberly J.H.: Optical Resonance and Two-Level Atoms. Wiley, New York (1975)

    Google Scholar 

  75. Folman R. et al.: Controlling cold atoms using nanofabricated surfaces: atom chips. Phys. Rev. Lett. 84, 4749 (2000)

    ADS  Article  Google Scholar 

  76. Folman R. et al.: Microscopic atom optics: from wires to an atom chip. Adv. At. Mol. Opt. Phys. 48, 263–356 (2002)

    Google Scholar 

  77. Fortagh J., Zimmermann C.: Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 79, 235 (2007)

    ADS  Article  Google Scholar 

  78. Lin Y., Teper I., Chin C., Vuletić V.: Impact of the Casimir-Polder potential and Johnson noise on Bose-Einstein condensate stability near surfaces. Phys. Rev. Lett. 92, 50404 (2004)

    ADS  Article  Google Scholar 

  79. Aigner S. et al.: Long-range order in electronic transport through disordered metal films. Science 319, 1226–1229 (2008)

    ADS  Article  Google Scholar 

  80. Haslinger S. et al.: Electron beam driven alkali metal atom source for loading a magneto-optical trap in a cryogenic environment. Appl. Phys. B 102, 819 (2011)

    ADS  Article  Google Scholar 

  81. Haslinger, S.: Cold atoms in a cryogenic environment. PhD thesis, TU-Wien (2011)

  82. Lukin M.D. et al.: Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87(3), 037901 (2001)

    ADS  Article  Google Scholar 

  83. Nielsen M., Chuang I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  84. Lambropoulos P., Petrosyan D.: Fundamentals of Quantum Optics and Quantum Information. Springer, Berlin (2006)

    Google Scholar 

  85. Bensky G. et al.: Universal dynamical decoupling from slow noise with minimal control. Europhys. lett. 89(1), 10011 (2010)

    ADS  Article  Google Scholar 

  86. Zhang P., Wang Y.D., Sun C.P.: Cooling mechanism for a nanomechanical resonator by periodic coupling to a cooper pair box. Phys. Rev. Lett. 95(9), 097204 (2005)

    ADS  Article  Google Scholar 

  87. Erez N., Gordon G., Nest M., Kurizki G.: Thermodynamic control by frequent quantum measurements. Nature 452, 724–727 (2008)

    ADS  Article  Google Scholar 

  88. Gordon G. et al.: Cooling down quantum bits on ultrashort time scales. New J. Phys. 11(12), 123025 (2009)

    ADS  Article  Google Scholar 

  89. Álvarez Gonzalo, A., Bhaktavatsala Rao A., Bhaktavatsala Rao D.D., Frydman L., Kurizki G.: Zeno and anti-Zeno polarization control of spin ensembles by induced dephasing. Phys. Rev. Lett. 105(16), 160401 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the EUthrough MIDAS, by DIP, the Humboldt-Meitner Award (G.K.), the Humboldt Foundation (D.P.) and the Wittgenstein Prize (J.S.)

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jörg Schmiedmayer.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Bensky, G., Amsüss, R., Majer, J. et al. Controlling quantum information processing in hybrid systems on chips. Quantum Inf Process 10, 1037 (2011). https://doi.org/10.1007/s11128-011-0302-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-011-0302-6

Keywords

  • Quantum information
  • Hybrid quantum systems
  • Atom chip