Skip to main content
Log in

A desired state can not be found with certainty for Grover’s algorithm in a possible three-dimensional complex subspace

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Using an accurate method, we prove that no matter what the initial superposition may be, neither a superposition of desired states nor a unique desired state can be found with certainty in a possible three-dimensional complex subspace, provided that the deflection angle Φ is not exactly equal to zero. By this method, we derive such a result that, if N is sufficiently large (where N denotes the total number of the desired and undesired states in an unsorted database), then corresponding to the case of identical rotation angles, the maximum success probability of finding a unique desired state is approximately equal to cos2 Φ for any given \({\Phi\in\left[0,\pi/2\right)}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grover L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)

    Article  CAS  ADS  Google Scholar 

  2. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing, quant-ph/9701001v1

  3. Zalka, C.: Grover’s quantum searching algorithm is optimal, quant-ph/9711070v2

  4. Jozsa, R.: Searching in Grover’s algorithm, quant-ph/9901021v1

  5. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching, quant-ph/9605034

  6. Grover L.K.: Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett. 80, 4329–4332 (1998)

    Article  CAS  ADS  Google Scholar 

  7. Brassard, G., Høyer, P., Tapp, A.: Quantum counting, quant-ph/9805082

  8. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation, quant-ph/0005055v1

  9. Ozhigov, Y.: Speedup of iterated quantum search by parallel performance, quant-ph/9904039v4

  10. Gingrich, R., Williams, C.P., Cerf, N.: Generalized quantum search with parallelism, quant-ph/9904049v1

  11. Long G.L., Li Y.S., Zhang W.L., Niu L.: Phase matching in quantum searching. Phys. Lett. A 262, 27–34 (1999)

    Article  MATH  CAS  ADS  MathSciNet  Google Scholar 

  12. Biham E., Biham O., Biron D., Grassl M., Lidar D.A.: Grover’s quantum search algorithm for an arbitrary initial amplitude distribution. Phys. Rev. A 60, 2742–2745 (1999)

    Article  CAS  ADS  Google Scholar 

  13. Biham E., Biham O., Biron D., Grassl M., Lidar D.A., Shapira D.: Analysis of generalized Grover quantum search algorithms using recursion equations. Phys. Rev. A 63, 012310 (2000)

    Article  ADS  Google Scholar 

  14. Carlini, A., Hosoya, A.: Quantum computers and unstructured search: finding and counting items with an arbitrarily entangled initial state, quant-ph/9909089

  15. Long, G.L., Xiao, L., Sun, Y.: General phase matching condition for quantum searching, quant-ph/0107013v1

  16. Long G.L., Tu C.C., Li Y.S., Zhang W.L., Yan H.Y.: An so(3) picture for quantum searching. J. Phys. A: Math. Gen. 34, 861–866 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Long G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64, 022307 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Høyer P.: Arbitrary phases in quantum amplitude amplification. Phys. Rev. A 62, 052304 (2000)

    Article  ADS  Google Scholar 

  19. Galindo A., Martín-Delgado M.A.: Family of grover’s quantum-searching algorithms. Phys. Rev. A 62, 062303 (2000)

    Article  ADS  Google Scholar 

  20. Li C.M., Hwang C.C., Hsieh J.Y., Wang K.S.: General phase-matching condition for a quantum searching algorithm. Phys. Rev. A 65, 034305 (2002)

    Article  ADS  CAS  Google Scholar 

  21. Hsieh J.Y., Li C.M.: General SU(2) formulation for quantum searching with certainty. Phys. Rev. A 65, 052322 (2002)

    Article  ADS  CAS  Google Scholar 

  22. Li D.F., Li X.X., Huang H.T., Li X.R.: Invariants of Grover’s algorithm and the rotation in space. Phys. Rev. A 66, 044304 (2002)

    Article  ADS  CAS  Google Scholar 

  23. Bhattacharya N., van Linden van den Heuvell H.B., Spreeuw R.J.C.: Implementation of quantum search algorithm using classical Fourier optics. Phys. Rev. Lett. 88, 137901 (2002)

    Article  PubMed  CAS  ADS  Google Scholar 

  24. Long G.L., Yan H.Y., Li Y.S., Tu C.C., Tao J.X., Chen H.M., Liu M.L., Zhang X., Luo J., Xiao L., Zeng X.Z.: Experimental NMR realization of a generalized quantum search algorithm. Phys. Lett. A 286, 121–126 (2001)

    Article  MATH  CAS  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenliang Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, W., Chen, X. A desired state can not be found with certainty for Grover’s algorithm in a possible three-dimensional complex subspace. Quantum Inf Process 10, 419–429 (2011). https://doi.org/10.1007/s11128-010-0209-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-010-0209-7

Keywords

Navigation