Skip to main content
Log in

nD methods for 1D parameter-dependent systems

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This note shows how certain Gröbner basis methods, which have been developed for multidimensional systems, can be applied to parameter-dependent one-dimensional systems. Both linear behavioral systems and nonlinear state-space systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Buchberger, B. (1985). Gröbner bases: An algorithmic method in polynomial ideal theory. In N. K. Bose (Ed.), Multidimensional systems theory. Progress, directions and open problems in multidimensional systems. Dordrecht: D. Reidel Publishing Company.

    Google Scholar 

  • Cox, D., Little, J., & O’Shea, D. (1992). Ideals, varieties, and algorithms. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H. (2012). Singular—A computer algebra system for polynomial computations. http://www.singular.uni-kl.de

  • Dion, J.-M., Commault, C., & van der Woude, J. (2003). Generic properties and control of linear structured systems: A survey. Automatica, 39, 1125–1144.

    Article  MATH  Google Scholar 

  • Dumitrescu, B., & Chang, B.-C. (2006). Robust Schur stability with polynomial parameters. IEEE Transactions on Circuits Systems II: Express Briefs, 53, 535–537.

  • Dumitrescu, B. (2007). Positivstellensatz for trigonometric polynomials and multidimensional stability tests. IEEE Transactions on Circuits Systems II: Express Briefs, 54, 353–356.

  • Fenichel, N. (1979). Geometric singular perturbation theory for ordinary differential equations. Journal of Differential Equations, 31, 53–98.

    Article  MATH  MathSciNet  Google Scholar 

  • Goeke, A. (2013). Reduktion und asymptotische Reduktion von Reaktionsgleichungen (in German). Ph.D. Thesis, RWTH Aachen University.

  • Goeke, A., Walcher, S., Zerz, E. (2014). Determining small parameters for quasi-steady state. Preprint.

  • Levandovskyy, V., & Zerz, E. (2007). Obstructions to genericity in study of parametric problems in control theory. Radon Series Computation on Applied Mathematics, 3, 127–149.

    MathSciNet  Google Scholar 

  • Li, L., Xu, L., & Lin, Z. (2013). Stability and stabilisation of linear multidimensional discrete systems in the frequency domain. International Journal of Control, 86, 1969–1989.

    Article  MathSciNet  Google Scholar 

  • Lin, Z. (1976). Stabilization and realization of a class of generalized linear systems. In Proceedings of American control conference (pp. 976–977), Seattle.

  • Z. Lin, L. Xu (Eds.) (2001). Proceedings of Gröbner bases to multidimensional systems and signal processing. Special issue of Multidimensional Systems and Signal Processing (vol 12, pp. 213–388).

  • Lin, Z., Xu, L., & Wu, Q. (2004). Applications of Gröbner bases to signal and image processing: A survey. Linear Algebra Applications, 391, 169–202.

  • Murray, J. D. (2002). Mathematical biology I: An introduction (3rd ed.). Berlin: Springer.

    MATH  Google Scholar 

  • Pereira, R., Rocha, P., & Simões, R. (2013). Characterizations of global reachability of 2D structured systems. Multidimensional Systems and Signal Processing, 24, 51–64.

  • Pillai, H., Wood, J., Rogers, E. (2000). Gröbner bases and constructive multidimensional behavioural theory. In Proceedings of 2nd workshop on multidimensional (nD) systems (nDS 2000), Czocha Castle.

  • Pommaret, J.-F. (2001). Partial differential control theory II: Control systems. Alphen aan den Rijn: Kluwer.

    Book  Google Scholar 

  • Postlethwaite, I., & MacFarlane, A. G. J. (1979). A complex variable approach to the analysis of linear multivariable feedback systems. Lecture notes in control and information sciences 12. Berlin: Springer.

    Book  Google Scholar 

  • Reluga, T., & Medlock, J. (2007). Resistance mechanisms matter in SIR models. Mathematical Biosciences Engineering, 4, 553–563.

    Article  MATH  MathSciNet  Google Scholar 

  • Seiler, W., & Zerz, E. (2015). Algebraic theory of linear systems: A survey. In A. Ilchmann & T. Reis (Eds.), Surveys in differential-algebraic equations II. Berlin: Springer.

    Google Scholar 

  • Toth, R., Willems, J. C., Heuberger, P. S. C., & Van den Hof, P. M. J. (2011). The behavioral approach to linear parameter-varying systems. IEEE Transactions on Automatic Control, 56, 2499–2514.

  • Verhulst, F. (2007). Periodic solutions and slow manifolds. International Journal of Bifurcation Chaos, 17, 2533–2540.

    Article  MATH  MathSciNet  Google Scholar 

  • Verhulst, F., & Bakri, T. (2007). The dynamics of slow manifolds. Journal of Indonesian Mathematical Society, 13, 73–90.

    MATH  MathSciNet  Google Scholar 

  • Willems, J. C. (1991). Paradigms and puzzles in the theory of dynamical systems. IEEE Transactions on Automatic Control, 36, 259–294.

    Article  MATH  MathSciNet  Google Scholar 

  • Zerz, E. (2001). Extension modules in behavioral linear systems theory. Multidimensional Systems and Signal Processing, 12, 309–327.

    Article  MATH  MathSciNet  Google Scholar 

  • Zerz, E. (2004). Multidimensional behaviours: An algebraic approach to control theory for PDE. International Journal of Control, 77, 812–820.

    Article  MATH  MathSciNet  Google Scholar 

  • Zerz, E., & Walcher, S. (2012). Controlled invariant hypersurfaces of polynomial control systems. Qualitative Theory of Dynamical Systems, 11, 145–158.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Zerz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zerz, E., Walcher, S. nD methods for 1D parameter-dependent systems. Multidim Syst Sign Process 26, 1097–1108 (2015). https://doi.org/10.1007/s11045-015-0317-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-015-0317-8

Keywords

Navigation