Skip to main content
Log in

Geometric phase as a determinant of a qubit– environment coupling

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the qubit geometric phase and its properties in dependence on the mechanism for decoherence of a qubit weakly coupled to its environment. We consider two sources of decoherence: dephasing coupling (without exchange of energy with environment) and dissipative coupling (with exchange of energy). Reduced dynamics of the qubit is studied in terms of the rigorous Davies Markovian quantum master equation, both at zero and non–zero temperature. For pure dephasing coupling, the geometric phase varies monotonically with respect to the polar angle (in the Bloch sphere representation) parameterizing an initial state of the qubit. Moreover, it is antisymmetric about some points on the geometric phase-polar angle plane. This is in distinct contrast to the case of dissipative coupling for which the variation of the geometric phase with respect to the polar angle typically is non-monotonic, displaying local extrema and is not antisymmetric. Sensitivity of the geometric phase to details of the decoherence source can make it a tool for testing the nature of the qubit–environment interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Lidar D.A., Whalley K.B.: Irreversible quantum dynamics. Lecture Notes in Physics, vol. 622, 83. Springer, Berlin (2006)

    Google Scholar 

  3. Alicki, R.: ibid, 121

  4. Kohler S., Hänggi P.: Improving the purity of one- and two-qubit gates. Fortschr. Physik 54, 804–819 (2006)

    Article  ADS  MATH  Google Scholar 

  5. Zanardi P., Rasseti M.: Holonomic quantum computation. Phys. Lett. A 264, 94–99 (1999)

    Article  CAS  MathSciNet  ADS  MATH  Google Scholar 

  6. Nayak C. et al.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008)

    Article  CAS  MathSciNet  ADS  MATH  Google Scholar 

  7. Jones J.A., Vedral V., Ekert A., Castagnoli G.: Geometric quantum computation using nuclear magnetic resonance. Nature (London) 403, 869–871 (2000)

    Article  CAS  ADS  Google Scholar 

  8. Sarandy M.S., Lidar D.A.: Adiabatic quantum computation in open systems. Phys. Rev. Lett. 95, 250503–250507 (2005)

    Article  CAS  ADS  PubMed  Google Scholar 

  9. Berry M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. London ser. A 329, 45–57 (1984)

    ADS  Google Scholar 

  10. Wilczek F., Zee A.: Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett. 52, 2111–2114 (1984)

    Article  CAS  MathSciNet  ADS  Google Scholar 

  11. Duan L.-M., Cirac J.I., Zoller P.: Geometric manipulation of trapped ions for quantum computation. Science 292, 1695–1697 (2001)

    Article  CAS  ADS  PubMed  Google Scholar 

  12. Recati A., Calarco T., Zanardi P., Cirac J.I., Zoller P.: Holonomic quantum computation with neutral atoms. Phys. Rev. A 66, 032309–032322 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Yin S., Tong M.D.: Geometric phase of a quantum dot system in nonunitary evolution. Phys. Rev. A 79, 044303–044307 (2009)

    Article  MathSciNet  ADS  CAS  Google Scholar 

  14. Falci G., Fazio R., Palma G.M., Siewert J., Vedral V.: Detection of geometric phases in superconducting nanocircuits. Nature 407, 355–358 (2000)

    Article  CAS  ADS  PubMed  Google Scholar 

  15. Faoro L., Siewert J., Fazio R.: Non-abelian phases, charge pumping and holonomic computation with Josephson junctions. J. Phys. Soc. Jpn. 72, 3–4 (2003)

    Article  Google Scholar 

  16. Parodi D., Sassetti M., Solinas P., Zanardi P., Zangh N.: Fidelity optimization for holonomic quantum gates in dissipative environments. Phys. Rev. A 73, 052304–052309 (2006)

    Article  ADS  CAS  Google Scholar 

  17. Parodi D., Sassetti M., Solinas P., Zangh N.: Environmental noise reduction for holonomic quantum gates. Phys. Rev. A 76, 012337–012343 (2007)

    Article  ADS  CAS  Google Scholar 

  18. Uhlmann A.: The transition probability in the state space of a *-algebra. Rep. Math. Phys. 9, 273–279 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Bassi A., Ippoliti E.: Geometric phase for open quantum systems and stochastic uravellings. Phys. Rev. A 73, 062104–062111 (2006)

    Article  MathSciNet  ADS  CAS  Google Scholar 

  20. Burić N., Radonjić M.: Uniquely defined geometric phase of an open system. Phys. Rev. A 80, 014101–014105 (2009)

    Article  MathSciNet  ADS  CAS  Google Scholar 

  21. Sjöqvist E. et al.: Geometric phases for mixed states in interferometry. Phys. Rev. Lett. 85, 2845–2849 (2000)

    Article  ADS  PubMed  Google Scholar 

  22. Bhandari R.: Singularities of the mixed state phase. Phys. Rev. Lett. 89, 268901 (2002)

    Article  MathSciNet  ADS  PubMed  CAS  Google Scholar 

  23. Sjöqvist E.: Quantal interferometry with dissipative internal motion. Phys. Rev. A 70, 052109–052115 (2004)

    Article  ADS  CAS  Google Scholar 

  24. Bhandari R.: Polarization of light and topological phases. Phys. Rep. 281, 1–64 (1997)

    Article  ADS  Google Scholar 

  25. Du J. et al.: An experimental observation of geometric phases for mixed states using NMR interferometry. Phys. Rev. Lett. 91, 100403–100407 (2003)

    Article  ADS  PubMed  CAS  Google Scholar 

  26. Mukunda N., Simon R.: Quantum kinematic approach to the geometric phase I. General formalism. Ann. Phys. 228, 205–268 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Tong D.M., Sjöqvist E., Kwek L.C., Oh C.H.: Kinematic approach to the mixed state geometric phase in nonunitary evolution. Phys. Rev. Lett. 93, 080405–080409 (2004)

    Article  CAS  ADS  PubMed  Google Scholar 

  28. Carollo A., Fuentes-Guridi I., Frana Santos M., Vedral V.: Geometric phase in open systems. Phys. Rev. Lett. 90, 160402–160406 (2003)

    Article  CAS  MathSciNet  ADS  PubMed  Google Scholar 

  29. Ericsson M., Sjöqvist E., Brännlund J., Oi D.K., Pati A.K.: Generalization of the geometric phase to completely positive maps. Phys. Rev. A 67, 020101–020105 (2003)

    Article  MathSciNet  ADS  CAS  Google Scholar 

  30. Marzlin K.-P., Ghose S., Sanders B.C.: Geometric phase distributions for open quantum systems. Phys. Rev. Lett. 93, 260402–260406 (2004)

    Article  ADS  PubMed  CAS  Google Scholar 

  31. Whitney R.S., Makhlin Y., Shnirman A., Gefen Y.: Geometric nature of the environment-induced Berry phase and geometric dephasing. Phys. Rev. Lett. 94, 070407–070411 (2005)

    Article  MathSciNet  ADS  PubMed  CAS  Google Scholar 

  32. Sarandy M.S., Duzzioni E.I., Moussa M.H.Y.: Dynamical invariants and nonadiabatic geometric phases in open quantum systems. Phys. Rev. A 76, 052112–052121 (2007)

    Article  MathSciNet  ADS  CAS  Google Scholar 

  33. Huang X.L., Yi X.X.: Non-Markovian effects on the geometric phase. Europhys. Lett. 82, 50001–50007 (2008)

    Article  ADS  CAS  Google Scholar 

  34. Banerjee S., Srikanth R.: Geometric phase of a qubit interacting with a squeezed-thermal bath. Eur. Phys. J. D 46, 335–344 (2008)

    Article  CAS  MathSciNet  ADS  Google Scholar 

  35. Fujikawa K., Hu M.-G.: Geometric phase of a two-level system in a dissipative environment. Phys. Rev. A 79, 052107–052114 (2009)

    Article  ADS  CAS  Google Scholar 

  36. Wang Z.S., Liu G.Q., Ji Y.H.: Noncyclic geometric quantum computation in a nuclear-magnetic-resonance system. Phys. Rev. A 79, 054301–054305 (2009)

    Article  ADS  CAS  Google Scholar 

  37. Singh K. et al.: Geometric phases for nondegenerate and degenerate mixed states. Phys. Rev. A 67, 032106–032115 (2003)

    Article  ADS  CAS  Google Scholar 

  38. Hänggi P., Ingold G.L.: Fundamental aspects of quantum Brownian motion. Chaos 15, 026105–026115 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  39. Alicki R., Fannes M., Pogorzelska M.: Quantum generalized subsystems. Phys. Rev. A 79, 052111–052120 (2009)

    Article  MathSciNet  ADS  CAS  Google Scholar 

  40. Łuczka J.: Spin in contact with thermostat: Exact reduced dynamics. Physica A 167, 919–934 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  41. Alicki R.: Pure decoherence in quantum systems. Open Sys. & Inf. Dyn. 11, 53–61 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Romero K.M.F., Talkner P., Hänggi P.: Is the dynamics of open quantum systems always linear?. Phys. Rev. A 69, 052109–052117 (2004)

    Article  ADS  CAS  Google Scholar 

  43. Dajka J., Mierzejewski M., Łuczka J.: Fidelity of asymmetric dephasing channels. Phys. Rev. A 79, 012104–012111 (2009)

    Article  ADS  CAS  Google Scholar 

  44. Doll R., Wubs M., Hänggi P., Kohler S.: Limitation of entanglement due to spatial qubit separation. Europhys. Lett. 76, 547–553 (2006)

    Article  CAS  ADS  Google Scholar 

  45. Doll R., Wubs M., Hänggi P., Kohler S.: Incomplete pure dephasing of N-qubit entangled W states. Phys. Rev. B 76, 045317–045331 (2007)

    Article  ADS  CAS  Google Scholar 

  46. Dajka J., Mierzejewski M., Łuczka J.: Entanglement persistence in contact with the environment: exact results. J. Phys. A: Math. Theor. 40, F879–F886 (2007)

    Article  CAS  ADS  Google Scholar 

  47. Dajka J., Łuczka J.: Origination and survival of qudit-qudit entanglement in open systems. Phys. Rev. A 77, 062303–062310 (2008)

    Article  MathSciNet  ADS  CAS  Google Scholar 

  48. Doll R., Hänggi P., Kohler S., Wubs M.: Fast initial qubit decoherence and the influence of substrate dimensions on error correction rates. Eur. Phys. J. B 68, 523–527 (2009)

    Article  CAS  ADS  Google Scholar 

  49. Yi X.X., Wang L.C., Wang W.: Geometric phase in dephasing systems. Phys. Rev. A 71, 044101–044105 (2005)

    Article  ADS  CAS  Google Scholar 

  50. Yi X.X., Tong D.M., Wang L.C., Kwek L.C., Oh C.H.: Geometric phase in open systems: beyond the Markov approximation and weak-coupling limit. Phys. Rev. A 73, 052103–052109 (2006)

    Article  ADS  CAS  Google Scholar 

  51. Dajka J., Mierzejewski M., Łuczka J.: Geometric phase of a qubit in dephasing environment. J. Phys. A Math. Theor. 41, F012001–F012008 (2008)

    Article  CAS  Google Scholar 

  52. Dajka J., Łuczka J.: Bifurcations of the geometric phase of a qubit asymmetrically coupled to the environment. J. Phys. A: Math. Theor. 41, F442001–F442009 (2008)

    Article  ADS  CAS  Google Scholar 

  53. Davies E.B.: Markovian master equations. Comm. Math. Phys. 39, 91–110 (1974)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. Dümcke R., Spohn H.: The proper form of the generator in the weak coupling limit. Z. Physik B 34, 419–422 (1979)

    Article  ADS  Google Scholar 

  55. Łuczka J.: On Markovian kinetic equations: Zubarev’s nonequilibrium statistical operator approach. Physica A 149, 245–266 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  56. Lendi K., van Wonderen A.J.: Davies theory for reservoir-induced entanglement in a bipartite system. J. Phys. A Math. Theor. 40, 279–288 (2007)

    Article  ADS  MATH  Google Scholar 

  57. Schuster D.I. et al.: Resolving photon number states in a superconducting circuit. Nature 445, 515–518 (2007)

    Article  CAS  ADS  PubMed  Google Scholar 

  58. Alicki R., Lendi K.: Quantum dynamical semigroups and applications. Springer, Berlin (1987)

    MATH  Google Scholar 

  59. Aharonov Y., Ananadan J.: Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593–1597 (1987)

    Article  MathSciNet  ADS  PubMed  Google Scholar 

  60. Chruściński D., Jamiołkowski A.: Geometric phases in classical and quantum mechanics. Birkhauser, Boston (2004)

    MATH  Google Scholar 

  61. Leek P.J. et al.: Observation of Berry’s phase in a solid-state qubit. Science 318, 1889–1892 (2007)

    Article  CAS  MathSciNet  ADS  PubMed  MATH  Google Scholar 

  62. Möttönen M. et al.: Experimental determination of the Berry phase in a superconducting charge pump. Phys. Rev. Lett. 100, 177201–177205 (2008)

    Article  PubMed  CAS  Google Scholar 

  63. Fillipp S. et al.: Experimental demonstration of the stability of Berry’s phase for a spin-1/2 particle. Phys. Rev. Lett. 102, 030404–030408 (2009)

    Article  ADS  CAS  Google Scholar 

  64. Nesterov A.I., Ovchinnikov S.G.: Geometric phases and quantum phase transitions in open systems. Phys. Rev. E 78, 015202–015206 (2008)

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Dajka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dajka, J., Łuczka, J. & Hänggi, P. Geometric phase as a determinant of a qubit– environment coupling. Quantum Inf Process 10, 85–96 (2011). https://doi.org/10.1007/s11128-010-0178-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-010-0178-x

Keywords

Navigation