Skip to main content
Log in

The sudden death of entanglement in constructed Yang–Baxter systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Some Hamiltonians are constructed from the unitary \({\check{R}_{i,i+1}(\theta, \varphi)}\)-matrices, where θ and \({\varphi}\) are time-independent parameters. We show that the entanglement sudden death (ESD) can happen in these closed Yang–Baxter systems. It is found that the ESD is not only sensitive to the initial condition, but also has a great connection with different Yang–Baxter systems. Especially, we find that the meaningful parameter \({\varphi}\) has a great influence on ESD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haroche S., Raimond J.-M.: Exploring the Quantum: Atoms, Cavities, and Photons. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  2. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Stenholm S., Suominen K.-A.: Quantum Approach to Informatics. Wiley, Hoboken (2005)

    Book  MATH  Google Scholar 

  4. Wootters W.K.: Entanglement of formation of an arbitary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  CAS  ADS  Google Scholar 

  5. James D.F.V, Kwiat P.G., Munro W.J., White A.G.: Measurement of qubits. Phys. Rev. A. 64, 052312 (2001)

    Article  ADS  Google Scholar 

  6. Yu T., Eberly J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  PubMed  ADS  Google Scholar 

  7. Roszak K., Machnikowski P.: Complete disentanglement by partial pure dephasing. Phys. Rev. A. 73, 022313 (2006)

    Article  ADS  Google Scholar 

  8. Ficek Z., Tanas R.: Dark periods and revivals of entanglement in a two-qubit system. Phys. Rev. A. 74, 024304 (2006)

    Article  ADS  Google Scholar 

  9. Yönac M., Yu T., Eberly J.H.: Pairwise concurrence dynamics: a four-qubit model. J. Phys. B. 40, S45–S59 (2007)

    Article  ADS  Google Scholar 

  10. Yu T., Eberly J.H.: Qubit disentanglement and decoherence via dephasing. Phys. Rev. B. 68, 165322 (2003)

    Article  ADS  Google Scholar 

  11. Yu T., Eberly J.H.: Sudden death of entanglement. Science 323, 598–601 (2009)

    Article  CAS  PubMed  MathSciNet  Google Scholar 

  12. Rau A.R.P., Ali M., Alber G.: Hastening, delaying, or averting sudden death of quantum entanglement. Eur. J. Phys. 82, 40002 (2008)

    Google Scholar 

  13. Ann K., Jaeger G.: Disentanglement and decoherence via dephasing. Phys. Rev. B. 75, 115307 (2007)

    Article  ADS  Google Scholar 

  14. Checinska A., Wodkiewicz K.: Separability of entangled qutrits in noisy channels. Phys. Rev. A. 76, 052306 (2007)

    Article  ADS  Google Scholar 

  15. Yang C.N.: Some exact results for the many-body problem in one dimension with repulsive δ-function interaction. Phys. Rev. Lett. 19, 1312–1315 (1967)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Yang C.N.: S matrix for the one-dimensional N-body problem with repulsive or attractive δ-function interaction. Phys. Rev. 168, 1920–1923 (1968)

    Article  ADS  Google Scholar 

  17. Baxter R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)

    MATH  Google Scholar 

  18. Baxter R.J: Partition funtion of the eighy-vertex lattice model. Ann. Phys. 70, 193–228 (1972)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Drinfeld V.G.: Hopf algebras and the quantum Yang–Baxter equation. Soviet Math. Dokl 32, 254–258 (1985)

    Google Scholar 

  20. Kitaev A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2 (2003)

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  21. Kauffman L.H., Lomonaco S.J. Jr: Braiding operators are universal quantum gates. New J. Phys. 6, 134 (2004)

    Article  ADS  Google Scholar 

  22. Franko J.M., Rowell E.C., Wang Z.: Extraspecial 2-groups and images of braid group representations. J. Knot Theory Ramif. 15, 413 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zhang Y., Kauffman L.H., Ge M.L.: Universal quantum gate, Yang–Baxterization and Hamiltonian. Int. J. Quant. Inf. 3, 669 (2005)

    Article  MATH  Google Scholar 

  24. Zhang Y., Ge M.L.: GHZ states, almost-complex structure and Yang–Baxter equation. Quant. Inf. Proc. 6, 363 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zhang, Y., Rowell, E.C., Wu, Y.S., Wang, Z.H., Ge, M.L.: From extraspecial twogroups to GHZ states. E-print quant-ph/0706.1761 (2007)

  26. Chen J.L., Xue K., Ge M.L.: Braiding transformation, entanglement swapping, and Berry phase in entanglement space. Phys. Rev. A. 76, 042324 (2007)

    Article  ADS  Google Scholar 

  27. Chen J.L., Xue K., Ge M.L.: Berry phase and quantum criticality in Yang–Baxter systems. Ann. Phys. 323, 2614 (2008)

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  28. Chen, J.L., Xue, K., Ge, M.L.: All pure two-Qudit entangled states can be generated via a universal Yang–Baxter matrix assisted by local unitary transformation. E-print quant-ph/0809.2321 (2008)

  29. Brylinski J.L., Brylinski R.: Universal quantum gates. In: Brylinski, R., Chen, G. (eds) Mathematics of Quantum Computation, Chapman Hall/CRC Press, Boca Raton (2002)

    Google Scholar 

  30. Wang G., Xue K., Wu C., Liang H., oh C.H: Entanglement and Berry phase in a new Yang–Baxter system. J. Phys. A: Math. Theor. 42, 125207 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  31. Jones V.F.R.: Baxterization. Int. J. Mod. Phys. A. 6, 2035–3043 (1991)

    Article  MATH  ADS  Google Scholar 

  32. Ge M.L., Xue K., Wu Y-S.: Explicit trigonometric Yang–Baxterization. Int. J. Mod. Phys. A. 6, 3735 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Zhang Y., Kauffman L.H., Ge M.L.: Universal quantum gate, Yang–Baxterization and Hamiltonian. Int. J. Quant. Inf 3, 669–678 (2005)

    Article  MATH  Google Scholar 

  34. Zhang Y., Kauffman L.H., Ge M.L.: Yang–Baxterizations, universal quantum gates and Hamiltonians. Quant. Inf. Proc 4, 159–197 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  35. Hu S.-W., Xue K., Ge M.-L.: Optical somulation of the Yang–Baxter equation. Phys. Rev. A 78, 022319 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  36. Sun, C., Hu, T., Wu, C., Xue, K.: Thermal entanglement in the systems constructed from the Yang–Baxter R-matrix. 7(5) of IJQI (August 2009)

  37. Temperley H.N.V., Lieb E.H.: Relations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problem. Proc. Roy. Soc. London A 322, 251–280 (1971)

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  38. Hu, S.W., Hu, M.G., Xue, K., Ge, M.L.: Linear optics implementation for Yang–Baxter equation. arXiv: 0711.4703v2 (2007)

  39. In: Jimbo, M. (ed.) Yang–Baxter Equations in Integrable Systems. World Scientific, Singapore (1990)

  40. Slingerland J.K., Bais F.A.: Quantum groups and non-Abelian braiding in quantum Hall systems. Nucl. Phys. B. 612, 229 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. Badurek G., Rauch H., Zeilinger A., Bauspiess W., Bonse U.: Phase-shift and spin-rotation phenomena in neutron interferometry. Phys. Rev. D. 14, 1177 (1976)

    Article  CAS  ADS  Google Scholar 

  42. Zeilinger A.: Complementarity in neutron interferometry. Phys. B. 137, 235–244 (1986)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taotao Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, T., Sun, C. & Xue, K. The sudden death of entanglement in constructed Yang–Baxter systems. Quantum Inf Process 9, 27–35 (2010). https://doi.org/10.1007/s11128-009-0125-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-009-0125-x

Keywords

PACS

Navigation