Skip to main content
Log in

Yang–Baxterizations, Universal Quantum Gates and Hamiltonians

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The unitary braiding operators describing topological entanglements can be viewed as universal quantum gates for quantum computation. With the help of the Brylinski’s theorem, the unitary solutions of the quantum Yang–Baxter equation can be also related to universal quantum gates. This paper derives the unitary solutions of the quantum Yang–Baxter equation via Yang–Baxterization from the solutions of the braid relation. We study Yang–Baxterizations of the non-standard and standard representations of the six-vertex model and the complete solutions of the non-vanishing eight-vertex model. We construct Hamiltonians responsible for the time-evolution of the unitary braiding operators which lead to the Schrödinger equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Nielsen I. Chuang (1999) Quantum Computation and Quantum Information Cambridge University Press Cambridge

    Google Scholar 

  2. L.H. Kauffman, Knots and Physics (World Scientific Publishers, 2002)

  3. P.K. Aravind (1997) Borromean Entanglement of the GHZ state S. Cohen Robert Horne Michael Stachel John (Eds) Potentiality, Entanglement and Passion-at-a-Distance. Kluwer Academic Publishers Boston

    Google Scholar 

  4. Kauffman L.H. Quantum Computation and the Jones Polynomial, in S. Lomonaco, Jr. (ed.), Quantum Computation and Information, AMS CONM/305, 2002, pp.~101–137. Arxiv: math. QA/0105255

  5. L.H. Kauffman S.J. Lomonaco SuffixJr. (2002) ArticleTitleQuantum Entanglement and Topological Entanglement New J. Phys 4 73.1–73.18 Occurrence Handle10.1088/1367-2630/4/1/373

    Article  Google Scholar 

  6. L.H. Kauffman S.J. Lomonaco SuffixJr. (2003) Entanglement Criteria–Quantum and Topological E. Donkor A.R. Pirich H.E Brandt (Eds) Quantum Information and Computation-Spie Proceedings, (21-22 April). Orlando FL 51–58

    Google Scholar 

  7. Kauffman L.H. (2002). Quantum Topology and Quantum Computing. In: Lomonaco S (eds). Quantum Computation, AMS PSAPM/58,, pp.273–303

  8. L.H. Kauffman S.J. Lomonaco SuffixJr. (2004) Quantum Knotsç E. Donkor A.R. Pirich H.E Brandt (Eds) Quantum Information and Computation II, Spie Proceedings (12–14 April). Orlando FL 268–284

    Google Scholar 

  9. L.H. Kauffman (2005) Teleportation Topology, Opt Spectrosc 9 IssueID2 27–232

    Google Scholar 

  10. L.H. Kauffman S.J. Lomonaco SuffixJr. (2004) ArticleTitleBraiding Operators are Universal Quantum Gates New J. Phys. 6 134 Occurrence Handle10.1088/1367-2630/6/1/134

    Article  Google Scholar 

  11. Zhang Y., Kauffman L.H., Ge M.L. Universal Quantum Gate, Yang–Baxterization and Hamiltonian. Arxiv: quant-ph/0412095

  12. H. Dye (2003) Unitary Solutions to the Yang–Baxter Equation in Dimension Four, Quantum Information Processing 2 117–150

    Google Scholar 

  13. J.L. Brylinski R. Brylinski (2002) Universal Quantum Gates R. Brylinski G Chen (Eds) Mathematics of Quantum Computation. Chapman & Hall/CRC Press Boca Raton Florida

    Google Scholar 

  14. Some Exact Results for the Many Body Problems in One Dimension with Repulsive Delta Function Interaction, Phys. Rev. Lett. 19, 1312–1314 (1967)

  15. R.J. Baxter (1972) ArticleTitlePartition Function of the Eight-Vertex Lattice Model Annals Phys 70 193–228 Occurrence Handle10.1016/0003-4916(72)90335-1

    Article  Google Scholar 

  16. Faddeev L.D. (1984). Integrable Models in (1+1)-Dimensional Quantum Field Theory. Proc of Summer School of Theoretical Physics, Les Houches, 1982 Elsevier, Amsterdam.

  17. M. Jimbo (1989) ArticleTitleYang–Baxter Equations in Integrable Systems Adv. Ser. Math. Phys 10 1

    Google Scholar 

  18. V.G. Drinfeld (1985) ArticleTitleHopf Algebras and the Quantum Yang–Baxter Equation Sov. Math. Dokl 32 254

    Google Scholar 

  19. M. Jimbo (1989) ArticleTitleIntroduction to the Yang–Baxter Equation Int. J. Mod. Phys. A 4 3759 Occurrence Handle10.1142/S0217751X89001503

    Article  Google Scholar 

  20. A.A. Belavin V.G. Drinfeld (1982) ArticleTitleSolutions of the Classical Yang–Baxter Equation for Simple Lie Algebras Funcl. Anal.Appl. 16 159 Occurrence Handle10.1007/BF01081585

    Article  Google Scholar 

  21. Reshetikhin N.Yu. Quantized Universal Enveloping Algebras, the Yang–Baxter Equation and Invariants Of Links. 1, LOMI-E-4-87 (1988)

  22. Reshetikhin N.Yu. Quantized Universal Enveloping Algebras, the Yang–Baxter Equation and Invariants Of Links. 2, LOMI-E-17-87 (1988)s

  23. M. Jimbo (1986) ArticleTitleQuantum R Matrix for the Generalized Toda System Commun. Math. Phys 102 537 Occurrence Handle10.1007/BF01221646

    Article  Google Scholar 

  24. Y. Akutsu M. Wadati (1987) ArticleTitleExactly Solvable Models and New Link Polynomials. 1: N State Vertex Models J. Phys. Soc. Jap 56 3039–3051 Occurrence Handle10.1143/JPSJ.56.3039

    Article  Google Scholar 

  25. Y. Akutsu T. Deguchi M. Wadati (1987) ArticleTitleExactly Solvable Models and New Link Polynomials. 2: Link Polynomials for Closed Three Braids J. Phys. Soc. Jap 56 3464–3479 Occurrence Handle10.1143/JPSJ.56.3464

    Article  Google Scholar 

  26. V.G. Turaev (1988) ArticleTitleThe Yang–Baxter Equation and Invariants of Links Invent. Math 92 527 Occurrence Handle10.1007/BF01393746

    Article  Google Scholar 

  27. V.F.R. Jones (1991) ArticleTitleBaxterization Int. J. Mod. Phys. A 6 2035–2043 Occurrence Handle10.1142/S0217751X91001027

    Article  Google Scholar 

  28. Ge M.L., Xue K., Wu Y.S. (1989). Yang–Baxterization and Algebraic Structures. In Yang C.N., Ge M.L (eds). World Scientific, Singpore

  29. Y. Cheng K. GeM.L. Xue (1991) ArticleTitleYang Baxterization of Braid Group Representations Commun. Math. Phys 136 195 Occurrence Handle10.1007/BF02096797

    Article  Google Scholar 

  30. M.L. Ge Y.S. Wu K. Xue (1991) ArticleTitleExplicit Trigonometric Yang–Baxterization Int. J. Mod. Phys 6A 3735

    Google Scholar 

  31. Sogo K., Uchinami M., Akutsu Y., Wadati M. (1982). Classification of Exactly Solvable Two-Component Models. Prog. Theor. Phys 68

  32. Ge M.L., Gwa L.H., Zhao H.K. (1990). Yang–Baxterization of the Eight-Vertex Model: the Braid Group Approach. J. Phys. A: Math. Gen 23, L 795-L 798x

  33. M. Couture Y. Cheng K. GeM.L. Xue (1991) ArticleTitleNew Solutions of the Yang–Baxter Equation and Their Yang–Baxterization Int. J. Mod. Phys. A 6 559 Occurrence Handle10.1142/S0217751X91000332

    Article  Google Scholar 

  34. N.H. Jing M.L. Ge Y.S. Wu (1991) ArticleTitleNew Quantum Group Associated with a ‘Nonstandard’ Braid Group Representation Lett. Math. Phys 21 183 Occurrence Handle10.1007/BF00420369

    Article  Google Scholar 

  35. M.L. Ge K. Xue (1991) ArticleTitleNew Solutions of Braid Group Representations Associated with Yang-Baxter Equation J. Math. Phys 32 1301–1309 Occurrence Handle10.1063/1.529329

    Article  Google Scholar 

  36. Lee H.C. in Physics, Geometry, and Topology, Proceedings of the NATO Advanced Study Institute and Banff Summer School in Theoretical Physics (Plemum. N.Y., 1991

  37. H.C. Lee M. Couture (1988) A Method to Construct Closed Braids from Links and a New Polynomial for Connected Links Chalk River Preprint Canada

    Google Scholar 

  38. C.L. Schultz (1981) ArticleTitleSolvable Q State Models in Lattice Statistics and Quantum Field Theory Phys. Rev. Lett 46 629 Occurrence Handle10.1103/PhysRevLett.46.629

    Article  Google Scholar 

  39. R.F. Werner (1989) ArticleTitleQuantum States with Einstein-Podolsky-Rosen Correlations Admitting a Hidden-Variable Model Phys. Rev. A 40 4277 Occurrence Handle10.1103/PhysRevA.40.4277 Occurrence Handle9902666

    Article  PubMed  Google Scholar 

  40. S. Hill W.K. Wootters (1997) ArticleTitleEntanglement of a Pair of Quantum Bits Phys. Rev. Lett 78 5022–5025 Occurrence Handle10.1103/PhysRevLett.78.5022

    Article  Google Scholar 

  41. W.K. Wootters (1998) ArticleTitleEntanglement of Formation of an Arbitrary State of Two Qubits Phys. Rev. Lett. 80 2245–2248 Occurrence Handle10.1103/PhysRevLett.80.2245

    Article  Google Scholar 

  42. M. Freedman (2003) ArticleTitleA Magnetic Model with a Possible Chern-Simons Phase Comm. Math. Phys 234 129–183 Occurrence Handle10.1007/s00220-002-0785-1

    Article  Google Scholar 

  43. Freedman M. Topological Views on Computational Complexity, Documenta Mathematica-Extra Volume ICM, pp. 453–464 (1998)

  44. M. Freedman M. Larsen Z. Wang (2002) ArticleTitleA Modular Functor Which is Universal for Quantum omputation Comm. Math. Phys 227 605–622 Occurrence Handle10.1007/s002200200645

    Article  Google Scholar 

  45. M.H. Freedman A. Kitaev Z. Wang (2002) ArticleTitleSimulation of Topological Field Theories by Quantum Computers Commun. Math. Phys 227 587–603 Occurrence Handle10.1007/s002200200635

    Article  Google Scholar 

  46. M. Freedman (2001) ArticleTitleQuantum Computation and the Localization of Modular Functors Found. Comput. Math 1 183–204 Occurrence Handle10.1007/s102080010006

    Article  Google Scholar 

  47. Bordewich M., Freedman M., Lovasz L., Welsh D., Approximate Counting and Quantum Computation (Combinatorics, Probability and Computing, Cambridge University Press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis H. Kauffman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Kauffman, L.H. & Ge, ML. Yang–Baxterizations, Universal Quantum Gates and Hamiltonians. Quantum Inf Process 4, 159–197 (2005). https://doi.org/10.1007/s11128-005-7655-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-005-7655-7

Keywords

PACS

Navigation