Advertisement

PROSPECTS

, Volume 46, Issue 2, pp 265–280 | Cite as

The biological side of social determinants: Neural costs of childhood poverty

  • Sebastián J. Lipina
Open File

Abstract

Interdisciplinary efforts to foster the development and education of children living in poverty require a comprehensive concept of multiple dimensions, within a systemic approach involving ecological and transactional perspectives. Constructing a common interdisciplinary language dealing with child development in ecological terms is a necessary first step toward building networks that can guide us in designing and implementing comprehensive, coherent actions. In this context, studies of how social determinants influence brain development include critical and sensitive growth periods for different neural systems, modulation of brain development by epigenetics mechanisms, influences of environmental toxins, lack of adequate nutrition, and stress and self-regulatory mechanisms. This neuroscientific agenda pioneers these explorations concerning the elemental components that bear on different levels of organization. Ecological considerations about how poverty shapes child neurocognitive development and its biological and social determinants should identify different protective and risk factors—as well as mediation mechanisms—that could help us better understand poverty’s effects and should guide us in designing actions to optimize children’s emotional, cognitive, and learning development.

Keywords

Social determinants Childhood poverty Brain development Cognitive development Mediation mechanisms Sustainable Development Goals (SDGs) 

References

  1. Avants, B. B., Hackman, D. A., Betancourt, L. M., Lawson, G. M., Hurt, H., & Farah, M. J. (2015). Relation of childhood home environment to cortical thickness in late adolescence: Specificity of experience and timing. PLoS One, 10, e0138217. doi: 10.1371/journal.pone.0138217.CrossRefGoogle Scholar
  2. Bakermans-Kranenburg, M. J., & Van Ijzendoorn, M. H. (2011). Differential susceptibility to rearing environment depending on dopamine-related genes: New evidence and a meta-analysis. Development and Psychopathology, 23, 39–52. doi: 10.1017/S0954579410000635.CrossRefGoogle Scholar
  3. Barker, R. G. (1968). Ecological psychology. Stanford, CA: Stanford University Press.Google Scholar
  4. Bavelier, D., Levi, D. M., Li, R., Dan, Y., & Hensch, M. P. (2010). Removing brakes on adult brain plasticity: From molecular to behavioral interventions. Journal of Neuroscience, 30, 14964–14971. doi: 10.1523/JNEUROSCI.4812-10.2010.CrossRefGoogle Scholar
  5. Beaver, K. M., Wright, J. P., DeLisi, M., & Vaughn, M. G. (2012). Dopaminergic polymorphisms and educational attainment: Results from a longitudinal sample of Americans. Developmental Psychology, 48, 932–938. doi: 10.1037/a0026313.CrossRefGoogle Scholar
  6. Beddington, J., Cooper, C. L., Field, J., Goswami, U., Huppert, F. A., Jenkins, R., et al. (2008). The mental wealth of nations. Nature, International Weekly Journal of Science, 455, 1057–1060. doi: 10.1038/4551057a.Google Scholar
  7. Betancourt, L. M., Avants, B., Farah, M. J., Brodsky, N. L., Wu, J., Ashtari, M., et al. (2015). Effect of socioeconomic status (SES) disparity on neural development in female African-American infants at age 1 month. Developmental Science. doi: 10.1111/desc.12344.Google Scholar
  8. Blair, C. (2010). Stress and the development of self-regulation in context. Child Development Perspectives, 4, 181–188. doi: 10.1111/j.1750-8606.2010.00145.x.CrossRefGoogle Scholar
  9. Blair, C., & Raver, C. C. (2012). Child development in the context of adversity: Experiential canalization of brain and behavior. American Psychologist, 67, 309–318. doi: 10.1037/a0027493.CrossRefGoogle Scholar
  10. Blair, C., & Raver, C. C. (2016). Poverty, stress, and brain development: New directions for prevention and intervention. Academic Pediatrics, 16, S30–S36. doi: 10.1016/j.acap.2016.01.010.CrossRefGoogle Scholar
  11. Blair, C., Granger, D. A., Willoughby, M., Mills-Koonce, R., Cox, M., Greenberg, M. T., et al. (2011). Salivary cortisol mediates effects of poverty and parenting on executive functions in early childhood. Child Development, 82, 1970–1984. doi: 10.1111/j1467-8624.2011.01643.x.CrossRefGoogle Scholar
  12. Bornstein, M. H., Putnick, D. L., Lansford, J. E., Deater-Deckard, K., & Bradley, R. H. (2015). A developmental analysis of caregiving modalities across infancy in 38 low- and middle-income countries. Child Development, 86, 1571–1587. doi: 10.1111/cdev.12402.CrossRefGoogle Scholar
  13. Bradley, R. H., & Corwyn, R. F. (2002). Socioeconomic status and child development. Annual Review of Psychology, 53, 371–399.CrossRefGoogle Scholar
  14. BDCG [Brain Development Cooperative Group] (2012). Total and regional brain volumes in a population-based sample from 4 to 18 years: The NIH MRI study of normal brain development. Cerebral Cortex, 22, 1–12. doi: 10.1093/cercor/bhr018.CrossRefGoogle Scholar
  15. Brito, H. H., & Noble, K. G. (2014). Socioeconomic status and structural brain development. Frontiers in Neuroscience, 8, 276. doi: 10.3389/fnins.2014.00276.CrossRefGoogle Scholar
  16. Brody, G. H., Dorsey, S., Forehand, R., & Armistead, L. (2002). Unique and protective contributions of parenting and classroom processes to the adjustment of African American children living in single-parent families. Child Development, 73, 274–286. doi: 10.1111/1467-8624.00405.CrossRefGoogle Scholar
  17. Bronfenbrenner, U. (1979). The ecology of human development: Experiments by nature and design. Cambridge, MA: Harvard University Press.Google Scholar
  18. Brooks-Gunn, J., & Duncan, G. J. (1997). The effects of poverty on children. Future of Children, 7, 55–71.CrossRefGoogle Scholar
  19. D’Angiulli, A., Van Roon, P. M., Weinberg, J., Oberlander, T. F., Grunau, R. E., Hertzman, C., et al. (2012). Frontal EEG/ERP correlates of attentional processes, cortisol, and motivational states in adolescents from lower and higher socioeconomic status. Frontiers in Human Neuroscience, 6, 306. doi: 10.3389/fnhum.2012.00306.Google Scholar
  20. D’Angiulli, A., Lipina, S. J., & Olesinska, A. (2012). Explicit and implicit issues in the developmental cognitive neuroscience of social inequality. Frontiers in Human Neuroscience, 6, 254. doi: 10.3389/fnhum.2012.00254.Google Scholar
  21. Demir, Ö. E., & Küntay, A. C. (2014). Cognitive and neural mechanisms underlying socioeconomic gradients in language development: New answers to old questions. Child Development Perspectives, 2, 113–118. doi: 10.1111/cdep.12069.CrossRefGoogle Scholar
  22. Donald, K. A., Eastman, E., Howells, F. M., Adnams, C., Riley, E. P., Woods, R. P., et al. (2015). Neuroimaging effects of prenatal alcohol exposure on the developing human brain: A magnetic resonance imaging review. Acta Neuropsychiatrica, 27, 251–269. doi: 10.1017/neu.2015.12.CrossRefGoogle Scholar
  23. Dornan, P., & Woodhead, M. (2015). How inequalities develop through childhood: Life course evidence from the Young Lives cohort study. Discussion Paper 2015-01. Florence: UNICEF Office of Research.Google Scholar
  24. Duncan, G. J., & Magnusson, K. (2012). Socioeconomic status and cognitive functioning: Moving from correlation to causation. Willey Interdisciplinary Reviews. Cognitive Science, 3, 377–386. doi: 10.1002/wcs.1176.CrossRefGoogle Scholar
  25. Eamon Keegan, M. (2002). Effects of poverty on mathematics and reading achievement of young adolescents. Journal of Early Adolescence, 22, 49–74. doi: 10.1177/0272431602022001003.CrossRefGoogle Scholar
  26. Essex, M. J., Boyce, W. T., Hertzman, C., Lam, L. L., Armstrong, J. M., Neumann, S. M., et al. (2013). Epigenetic vestiges of early developmental adversity: Childhood stress exposure and DNA methylation in adolescence. Child Development, 84, 58–75. doi: 10.1111/j.1467-8624.2011.01641.x.CrossRefGoogle Scholar
  27. Evans, G. W., Dongping, L., & Whipple, S. S. (2013). Cumulative risk and child development. Psychological Bulletin, 139, 1342–1396. doi: 10.1037/a0031808.CrossRefGoogle Scholar
  28. Farah, M. J., Shera, D. M., Savage, J. H., Betancourt, L., Giannetta, J. M., Brodsky, N. L., et al. (2006). Childhood poverty: Specific associations with neurocognitive development. Brain Research, 1110, 166–174.CrossRefGoogle Scholar
  29. Fernald, L. C. H., & Gunnar, M. R. (2009). Poverty-alleviation program participation and salivary cortisol in very low-income children. Social Science & Medicine, 68, 2180–2189. doi: 10.1016/j.socscimed.2009.03.032.CrossRefGoogle Scholar
  30. Foresight Mental Capital and Wellbeing Project (2008). Systems maps. London: The Government Office for Science.Google Scholar
  31. Ganzel, B., Morris, P., & Wethington, E. (2010). Allostasis and the human brain: Integrating models of stress from the social and life sciences. Psychological Review, 117, 134–174. doi: 10.1037/a0017773.CrossRefGoogle Scholar
  32. Georgieff, M. K., Brunette, K. E., & Tran, P. V. (2015). Early life nutrition and neural plasticity. Development and Psychopathology, 27, 411–423. doi: 10.1017/S0954579415000061.CrossRefGoogle Scholar
  33. Gianaros, P. J., & Hackman, D. (2013). Contribution of neuroscience to the study of socioeconomic health disparities. Psychosomatic Medicine, 75, 1–6. doi: 10.1097/PSY.0b013e3182a5f9c1.CrossRefGoogle Scholar
  34. Grandjean, P., & Landrigan, P. J. (2014). Neurobehavioural effects of developmental toxicity. Lancet Neurology, 13, 330–338. doi: 10.1016/S1474-4422(13)70278-3.CrossRefGoogle Scholar
  35. Hackman, D. A., & Farah, M. J. (2009). Socioeconomic status and the developing brain. Trends in Cognitive Sciences, 13, 65–73. doi: 10.1016/j.tics.2008.11.003.CrossRefGoogle Scholar
  36. Hackman, D. A., Farah, M. J., & Meany, M. J. (2010). Socioeconomic status and the brain: Mechanistic insights from human and animal research. Nature Reviews Neuroscience, 11, 651–659. doi: 10.1038/nrn2897.CrossRefGoogle Scholar
  37. Hackman, D. A., Gallop, R., Evans, G. W., & Farah, M. J. (2015). Socioeconomic status and executive function: Developmental trajectories and mediation. Developmental Science, 18, 686–702. doi: 10.1111/desc.12246.CrossRefGoogle Scholar
  38. Hair, N. L., Hanson, J. L., Wolfe, B. L., & Pollak, S. D. (2015). Association of child poverty, brain development, and academic achievement. JAMA Pediatrics, 169, 822–829. doi: 10.1001/jamapediatrics.2015.1475.CrossRefGoogle Scholar
  39. Hart, B., & Risley, T. R. (1995). Meaningful differences in the everyday experience of young American children. Baltimore, MD: Paul H. Brookes Publishing Company.Google Scholar
  40. Hirsh-Pasek, K., Adamson, L. B., Bakeman, R., Tresch Owen, M., Golinkoff, R. M., Pace, A., et al. (2015). The contribution of early communication quality to low-income children’s language success. Psychological Science, 26, 1071–1083. doi: 10.1177/0956797615581493.CrossRefGoogle Scholar
  41. Hoff, E. (2006). How social contexts support and shape language development. Developmental Review, 26, 55–88. doi: 10.1016/j.dr.2005.11.002.CrossRefGoogle Scholar
  42. Johnson, S. B., Riis, J. L., & Noble, K. G. (2016). State of the art review: Poverty and the developing brain. Pediatrics, 137, pjj: e20153075. doi: 10.1542/peds.2015-3075.CrossRefGoogle Scholar
  43. Karatoreos, I. N., & McEwen, B. S. (2013). Annual research review: The neurobiology and physiology of resilience and adaptation across the life course. Journal of Child Psychology and Psychiatry, 54, 337–347. doi: 10.1111/jcpp.12054.CrossRefGoogle Scholar
  44. Kim, P., Evans, G. W., Angstadt, M., Ho, S. S., Sripada, C. S., Swain, J. E., et al. (2013). Effects of childhood poverty and chronic stress on emotion regulatory brain function in adulthood. Proceedings of the National Academy of Sciences of the United States of America, 110, 18442–18447. doi: 10.1073/pnas.1308240110.CrossRefGoogle Scholar
  45. Lipina, S. J. (2016). Critical considerations about the use of poverty measures in the study of cognitive development. International Journal of Psychology. doi: 10.1002/ijop.12282.Google Scholar
  46. Lipina, S. J. (2014). Biological and sociocultural determinants of neurocognitive development: Central aspects of the current scientific agenda. In A. Battro & I. Potrykus (Eds.), Bread and brain, education and poverty (pp. 1–30). Vatican City: Pontifical Academy of Sciences.Google Scholar
  47. Lipina, S. J., & Colombo, J. A. (2009). Poverty and brain development during childhood: An approach from cognitive psychology and neuroscience. Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  48. Lipina, S. J., & Evers, K. (2017). Neuroscience of childhood poverty: Evidence of impacts and mechanisms as vehicles of dialog with ethics. Frontiers in Psychology, 8(61). doi: 10.3389/fpsyg.2017.00061.
  49. Lipina, S. J., & Segretin, M. S. (2015). 6000 días más: Evidencia neurocientífica acerca del impacto de la pobreza infantil1 [6000 more days: Neuroscientific evidence about the impact of childhood poverty]. Psicología Educativa, 21(107), 116. doi: 10.1016/j.pse.2015.08.003.Google Scholar
  50. Lipina, S. J., Segretin, M. S., Hermida, M. J., Prats, L., Fracchia, C., & Colombo, J. A. (2013). Linking childhood poverty and cognition: Individual and environmental predictors of non-verbal executive control in an Argentine sample. Developmental Science, 16, 697–707. doi: 10.3389/fpsyg.2014.00205.CrossRefGoogle Scholar
  51. Lipina, S. J., Simonds, J., & Segretin, M. S. (2011). Recognizing the child in child poverty. Vulnerable Children and Youth Studies, 6, 8–17. doi: 10.1080/17450128.2010.521598.CrossRefGoogle Scholar
  52. Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10, 434–445. doi: 10.1038/nrn2639.CrossRefGoogle Scholar
  53. Mackey, A. P., Finn, A. S., Leonard, J. A., Jacoby-Senghor, D. S., West, M. R., Gabrieli, C. F. O., et al. (2015). Neuroanatomical correlates of the income-achievement gap. Psychological Science, 26, 925–933. doi: 10.1177/0956797615572233.CrossRefGoogle Scholar
  54. Maholmes, V., & King, R. B. (2012). The Oxford Handbook of poverty and child development. Oxford: Oxford University Press.Google Scholar
  55. McEwen, B. S., & Gianaros, P. J. (2010). Central role of the brain in stress and adaptation: Links to socioeconomic status, health, and disease. Annals of the New York Academy of Sciences, 1186, 190–222. doi: 10.1111/j.1749-6632.2009.05331.x.CrossRefGoogle Scholar
  56. McLaughlin, K. A., & Sheridan, M. A. (2016). Beyond cumulative risk: A dimensional approach to childhood adversity. Current Directions in Psychological Science, 25, 239–245.CrossRefGoogle Scholar
  57. Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H. L., et al. (2011). A gradient of childhood self-control predicts health, wealth, and public safety. Proceedings of the National Academy of Sciences of the United States of America, 108, 2693–2698. doi: 10.1073/pnas.1010076108.CrossRefGoogle Scholar
  58. NICHD [National Institute of Child & Human Development Early Child Care Research Network] (2005). Duration and developmental timing of poverty and children´s cognitive and social development from birth through third grade. Child Development, 76, 795–810.CrossRefGoogle Scholar
  59. Noble, K. G., Houston, S. M., Brito, N. H., Bartsch, H., Kane, E., Kuperman, J. M., et al. (2015). Family income, parental education and brain structure in children and adolescents. Nature, International Weekly Journal of Science, 18, 773–778. doi: 10.1038/nn.3983.Google Scholar
  60. Noble, K. G., Norman, M. F., & Farah, M. J. (2005). Neurocognitive correlates of socioeconomic status in kindergarten children. Developmental Science, 8, 74–87.CrossRefGoogle Scholar
  61. Odgers, C. L. (2015). Income inequality and the developing child: Is it all relative? American Psychologist, 70, 722–731. doi: 10.1037/a0039836.CrossRefGoogle Scholar
  62. Pavlakis, A. E., Noble, K., Pavlakis, S. G., Ali, N., & Frank, Y. (2015). Brain imaging and electrophysiology biomarkers: Is there a role in poverty and education outcome research? Pediatric Neurology, 52, 383–388. doi: 10.1016/j.pediatrneurol.2014.11.005.CrossRefGoogle Scholar
  63. Peretz, I., & Zatorre, R. J. (2005). Brain organization for music processing. Annual Review of Psychology, 56, 89–114. doi: 10.1146/annurev.psych.56.091103.070225.CrossRefGoogle Scholar
  64. Perkins, S. C., Finegood, E. D., & Swain, J. E. (2013). Poverty and language development: Roles of parenting and stress. Innovation in Clinical Neuroscience, 10, 10–19.Google Scholar
  65. Piccolo, L. R., Merz, E. C., He, X., Sowell, E. R., & Noble, K. G. (2016). Age-related differences in cortical thickness vary by socioeconomic status. PLoS One, 11, e0162511. doi: 10.1371/journal.pone.0162511.CrossRefGoogle Scholar
  66. Posner, M. I., & Raichle, M. E. (1994). Images of mind. New York: Scientific American Library.Google Scholar
  67. Raizada, R. D. S., & Kishiyama, M. M. (2010). Effects of socioeconomic status on brain development, and how cognitive neuroscience may contribute to leveling the playing field. Frontiers in Human Neuroscience, 4, 3. doi: 10.3389/neuro.09.003.2010.Google Scholar
  68. Reardon, S. (2015). Poverty shrinks brains from birth. Nature, International Weekly Journal of Science. doi: 10.1038/nature.2015.17227.Google Scholar
  69. Roth, T. L., & Sweatt, J. D. (2011). Epigenetic mechanisms and environmental shaping of the brain during sensitive periods of development. Journal of Child Psychology and Psychiatry, 52, 398–408. doi: 10.1111/j.1469-7610.2010.02282.x.CrossRefGoogle Scholar
  70. Scott, M. M. (2005). A powerful theory and a paradox: Ecological psychologists after Barker. Environment and Behavior, 37, 295–329. doi: 10.1177/0013916504270696.CrossRefGoogle Scholar
  71. Sheridan, M. A., & McLaughlin, K. A. (2014). Dimensions of early experience and neural development: Deprivation and threat. Trends in Cognitive Sciences, 18, 580–585. doi: 10.1016/j.tics.2014.09.001.CrossRefGoogle Scholar
  72. Sheridan, M. A., Sarsour, K., Jutte, D., D’Esposito, M., & Boyce, W. T. (2012). The impact of social disparity on prefrontal function in childhood. PLoS ONE, 7, e35744. doi: 10.1371/journal.pone.0035744.CrossRefGoogle Scholar
  73. Shonkoff, J. P., Boyce, W. T., & McEwen, B. S. (2009). Neuroscience, molecular biology, and the childhood roots of health disparities: Building a new framework for health promotion and disease prevention. JAMA, 301, 2252–2259. doi: 10.1001/jama.2009.754.CrossRefGoogle Scholar
  74. Shonkoff, J. P., Garner, A. S., & Committee on Psychosocial Aspects of Child and Family Health, Committee on Early Childhood, Adoption, and Dependent Care, & Section on Developmental and Behavioral Pediatrics (2012). The lifelong effects of early childhood adversity and toxic stress. Pediatrics, 129, e232–e246. doi: 10.1542/peds.2011-2663.CrossRefGoogle Scholar
  75. Sirois, S., Spratling, M., Thomas, M. S., Westermann, G., Mareschal, D., & Johnson, M. J. (2008). Précis of neuroconstructivism: How the brain constructs cognition. Behavioral and Brain Sciences, 31, 321–331. doi: 10.1017/S0140525X0800407X.CrossRefGoogle Scholar
  76. Sperber, D., & Hirschfeld, L. A. (2004). The cognitive foundations of cultural stability and diversity. Trends in Cognitive Sciences, 8, 40–46. doi: 10.1016/j.tics.2003.11.002.CrossRefGoogle Scholar
  77. Stephens, N. M., Markus, H. R., & Phillips, L. T. (2014). Social class culture cycles: How three gateway contexts shape selves and fuel inequality. Annual Review of Psychology, 65, 16.1–16.24. doi: 10.1177/0022022114534768.CrossRefGoogle Scholar
  78. Thompson, B. L., Levitt, P., & Stanwood, G. D. (2009). Prenatal exposure to drugs: Effects on brain development and implications for policy and education. Nature Reviews Neuroscience, 10, 303–312. doi: 10.1038/nrn2598.CrossRefGoogle Scholar
  79. Ursache, A., & Noble, K. G. (2016). Neurocognitive development in socioeconomic context: Multiple mechanisms and implications for measuring socioeconomic status. Psychophysiology, 53, 71–82. doi: 10.1111/psyp.12547.CrossRefGoogle Scholar
  80. Wagmiller, R. L. (2015). The temporal dynamics of childhood economic deprivation and children’s achievement. Child Development Perspectives, 9, 158–163.CrossRefGoogle Scholar
  81. Wiebe, S. A., Clark, C. A. C., De Jong, D. M., Chevalier, N., Espy, K. A., & Wakschlag, L. (2015). Prenatal tobacco exposure and self-regulation in early childhood: Implications for developmental psychopathology. Development and Psychopathology, 27, 397–409. doi: 10.1017/S095457941500005X.CrossRefGoogle Scholar
  82. Yoshikawa, H., Aber, J. L., & Beardslee, W. R. (2012). The effects of poverty on the mental, emotional, and behavioral health of children and youth. American Psychologist, 67, 272–284. doi: 10.1037/a0028015.CrossRefGoogle Scholar
  83. Zhang, T. Y., & Meaney, M. J. (2010). Epigenetics and the environmental regulation of the genome and its function. Annual Review of Psychology, 61, 439–466. doi: 10.1146/annurev.psych.60.110707.163625.CrossRefGoogle Scholar

Copyright information

© UNESCO IBE 2017

Authors and Affiliations

  1. 1.Unidad de Neurobiología Aplicada (UNA, CEMIC-CONICET)Buenos AiresArgentina

Personalised recommendations