Skip to main content
Log in

The Effect of Sodium Thiocyanate on the Corrosion Dissolution Rate of Silver in Thiosemicarbazide Solutions

  • Published:
Protection of Metals Aims and scope Submit manuscript

Abstract

The effect of thiocyanate on the corrosion dissolution rate of silver in thiosemicarbazide (TSC) ammonium-chloride-bromide solutions was studied by using gravimetry and rotating disc electrode technique. The corrosion dissolution of silver was shown to be preceded by the formation of dithiosemicarbazide molecules due to the oxidation with iron (III) ions. The “second ligand” phenomenon is discussed, which consists in an increase in the corrosion dissolution rate of silver upon adding sodium thiocyanate (STC) to a TSC solution because of the decrease in the adsorption layer thickness. A synergism was discovered in the case of the corrosion dissolution of silver in a solution containing both thiosemicarbazide and sodium thiocyanate. The composition of the adsorption layer formed on a silver electrode and involving silver, sulfur (AgHS and Ag2S), as well as carbon, nitrogen, and oxygen forming the base of adsorption layers, was investigated by means of Auger spectrometry. The kinetic parameters (rate constants and reaction orders) were determined and a mechanism of the corrosion dissolution of silver in TSC, STC, and TSC + STC solutions is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kozin, L.F. and Bogdanova, A.K., Zh. Fiz. Khimii, 2002, vol. 76, no.4, p. 711.

    Google Scholar 

  2. Kozin, L.F. and Bogdanova, A.K., Teor. Eksp. Khimiya, 2001, vol. 37, no.4, p. 251.

    Google Scholar 

  3. Chursanov, Yu.V., Potashnikov, Yu.M., and Gromova, S.V., Zh. Fiz. Khimii, 1997, vol. 71, no.8, p. 1397.

    Google Scholar 

  4. Chursanov, Yu.V., Potashnikov, Yu.M., and Gortsevich, S.L., Zh. Fiz. Khimii, 1997, vol. 71, no.7, p. 1181.

    Google Scholar 

  5. Shatalov, G.V., Altukhov, V.K., and Stekol’nikov, Yu.A., Zh. Prikl. Khimii, 1990, vol. 63, no.5, p. 1004.

    Google Scholar 

  6. Kozin, L.F., Berezhnoi, E.O., and Bogdanova, A.K., Teor. Eksp. Khimiya, 2000, vol. 36, no.5, p. 296.

    Google Scholar 

  7. Kozin, L.F., Elektroosazhdenie i rastvorenie mnogovalentnykh metallov (Electrodeposition and Dissolution of Polyvalent Metals), Kiev: Naukova Dumka, 1989.

    Google Scholar 

  8. Kozin, L.F., Berezhnoi, E.O., and Bogdanova, A.K., Teor. Eksp. Khimiya, 2002, vol. 38, no.6, p. 377.

    Google Scholar 

  9. Perez-Bendito, D. and Silva, M., Kinetic Methods in Analytical Chemistry, New York: Wiley, 1989.

    Google Scholar 

  10. Khrushcheva, E.I. and Kazarinov, V.E., Elektrokhimiya, 1986, vol. 22, issue9, p. 1262.

    Google Scholar 

  11. Lur’e, Yu.Yu., Spravochnik po analiticheskoi khimii (Handbook on Analytical Chemistry), Moscow: Khimiya, 1979.

    Google Scholar 

  12. Inczedy, J., Analytical Applications of Complex Equilibria, Budapest: Akdemiai Riado, 1976.

    Google Scholar 

  13. Toropova, V.F. and Kirillova, L.S., Zh. Neorg. Khimii, 1960, vol. 5, issue3, p. 575.

    Google Scholar 

  14. Khimicheskaya entsiklopediya (Chemical Encyclopedia), Moscow: Izd. Bol’shaya Rossiiskaya Entsiklopediya, 1995, vol. 4.

  15. Bek, M. and Nadypal, I., Investigation of Complex Formation with Novel Methods, Moscow: Mir, 1989.

    Google Scholar 

  16. Fridman, Ya.D., Koord. Khimiya, 1975, vol. 1, issue9, p. 1155.

    Google Scholar 

  17. Pickering, W.F., Modern Analytical Chemistry, New York: Marsel Dekker, 1975.

    Google Scholar 

  18. Rios, A., Silva, M., and Valcarcel, M., Z. Anal. Chem., 1985, vol. 320, p. 762.

    Article  Google Scholar 

  19. Marin, A., Silva, M., and Perez-Bendito, D., Anal. Chim. Acta, 1969, vol. 41, p. 226.

    Google Scholar 

  20. Khimicheskaya entsiklopediya (Chemical Encyclopedia), Moscow: Izd. Bol’shaya Rossiiskaya Entsiklopediya, 1995, vol. 4.

  21. Swain, C.G. and Scot, C.B., J. Am. Chem. Soc., 1953, vol. 75, no.1, p. 141.

    Article  Google Scholar 

  22. Palm, V.A., Osnovy kolichestvennoi teorii organicheskikh reaktsii (Basic Principles of Quantitative Theory of Organic Reactions), Leningrad: Khimiya, 1967.

    Google Scholar 

  23. Levich, V.G., Fiziko-khimicheskaya gidrodinamika (Physicochemical Hydrodynamics), Moscow: Fizmatgiz, 1959.

    Google Scholar 

  24. Filinovskii, V.Yu. and Pleskov, Yu.V., Kinetika slozhnykh elektrokhimicheskikh reaktsii (Kinetics of Complex Electrochemical Reactions), Moscow: Nauka, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zashchita Metallov, Vol. 41, No. 4, 2005, pp. 372–380.

Original Russian Text Copyright © 2005 by Kozin, Danil’tsev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozin, L.F., Danil’tsev, B.I. The Effect of Sodium Thiocyanate on the Corrosion Dissolution Rate of Silver in Thiosemicarbazide Solutions. Prot Met 41, 341–348 (2005). https://doi.org/10.1007/s11124-005-0048-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11124-005-0048-6

Keywords

Navigation