Skip to main content
Log in

Solid-Phase Diffusion at a Potentiostatic Dissolution of Silver Alloyed with Gold

  • Published:
Protection of Metals Aims and scope Submit manuscript

Abstract

In an acidic nitrate solution containing no less than 10−4 mol/l Ag+, potentiostatic anodic dissolution of silver from its alloy with gold (up to 35 at. %) already in about 10 s is limited by the solid-phase mutual diffusion of the components. A number of diffusion-kinetic dissolution models taking into account contributions from the liquid-phase mass transfer, segregation in the surface layer, microroughness of the surface, shift of the alloy-solution interface, as well as the relaxation of nonequilibrium vacancies into a transient dissolution current are considered. The diffusivities and mutual diffusivities of the components, concentrations of nonequilibrium vacancies, and thickness of the diffusion zone estimated in terms of these models are compared. The effect of the overpotential and alloy composition is discussed. The main source of nonequilibrium monovacancies in the amount 14 orders as high as the equilibrium one is found to be the dissolution of silver. The efficiency of the sinks, among which the formation of bivacancies seemingly dominates, is not high, which predetermines the slowness of relaxation processes in the solid-phase diffusion zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Losev, V.V. and Pchelnikov, A.P., Itogi Nauki Tekhniki. Elektrokhimiya, 1979, vol. 15, p. 62.

    Google Scholar 

  2. Kaiser, H., Alloy Dissolution. Chemical Industries, New York: Basel, 1987, vol. 28 (Corrosion Mechanism), p. 85.

    Google Scholar 

  3. Marshakov, I.K., Vvedenskii, A.V., Kondrashin, V.Yu., and Bokov, G.A., Anodnoe rastvorenie i selektivnaya korroziya splavov (Anodic Dissolution and Selective Corrosion of Alloys), Voronezh: Izd. VGU, 1988.

    Google Scholar 

  4. Losev, V.B., Pchelnikov, A.P., and Marshakov, A.I., Itogi Nauki Tekhniki. Elektrokhimiya, 1984, vol. 21, p. 77.

    Google Scholar 

  5. Wen, C.J., Ho, C., Boukamp, B.A., et al., Int. Metals Rev., 1981, vol. 26, no.6, p. 253.

    Google Scholar 

  6. Lantelme, F., Iwadate, Y., Shi, Y., et al., J. Electroanal. Chem., 1985, vol. 107, no.2, p. 229.

    Article  Google Scholar 

  7. Vvedenskii, A.V., Marshakov, I.K., and Storozhenko, V.N., Elektrokhimiya, 1994, vol. 30, no.4, p. 459.

    Google Scholar 

  8. Vvedenskii, A.V., Stekolnikov, Yu.A., Tutukina, N.M., and Marshakov, I.K., Elektrokhimiya, 1982, vol. 18, no.12, p. 1646.

    Google Scholar 

  9. Bobrinskaya, E.V., Vvedenskii, A.V., and Marshakov, I.K., Elektrokhimiya, 1999, vol. 35, no.10, p. 1202.

    Google Scholar 

  10. Bobrinskaya, E.V. and Vvedenskii, A.V., Elektrokhimiya, 2001, vol. 37, no.9, p. 1102.

    Google Scholar 

  11. Bokshtein, B.S., Bokshtein, S.Z., and Zhukhovitskii, L.A., Termodinamika i kinetika diffuzii v tverdykh telakh (Thermodynamics and Kinetics of Diffusion in Solids), Moscow: Metallurgiya, 1974.

    Google Scholar 

  12. Physical Metallurgy, Cahw, R.W. and Haasen, P., Eds., Amsterdam: North-Holland Physics, 1983, vols. 1 and 2.

    Google Scholar 

  13. Geguzin, Ya.E., Diffuzionnaya zona (Diffusion Zone), Moscow: Nauka, 1973.

    Google Scholar 

  14. Borovskii, I.K., Gurov, K.P., Marchukova, I.D., and Ugaste, Yu.E., Protsessy vzaimnoi diffuzii v splavakh (Mutual Diffusion Processes in Alloys), Moscow: Nauka, 1979.

    Google Scholar 

  15. Bokshtein, B.S., Kopetskii, I.V., and Shvindlerman, L.S., Termodinamika i kinetika granits zeren v metallakh (Thermodynamics and Kinetics of Grain Boundaries in Metals), Moscow: Metallurgiya, 1986.

    Google Scholar 

  16. Kaibyshev, O.A. and Valiev, R.Z., Granitsy zeren i svoistva metallov (Grain Boundaries and Metal Properties), Moscow: Metallurgiya, 1984.

    Google Scholar 

  17. Bokshtein, S.Z., Stroenie i svoistva metallicheskikh splavov (Structure and Properties of Metal Alloys), Moscow: Metallurgiya, 1971.

    Google Scholar 

  18. Suvorov, A.L., Defekty v metallakh (Defects in Metals), Moscow: Nauka, 1984.

    Google Scholar 

  19. Ermakov, S.S., Fizika metallov i defekty kristallicheskogo stroeniya (Physics of Metals and Defects of Crystalline Structure), Leningrad: Izd. LGU, 1989.

    Google Scholar 

  20. Vvedenskii, A.V., Marshakov, I.K., Stekolnikov, Yu.A., and Anokhina, I.V., Zashch. Met., 1985, vol. 21, no.3, p. 346.

    Google Scholar 

  21. Anokhina, I.V., Vvedenskii, A.V., Stekolnikov, Yu.A., and Marshakov, I.K., Zashch. Met., 1986, vol. 22, no.5, p. 705.

    Google Scholar 

  22. Zartsyn, I.D., Vvedenskii, A.V., and Marshakov, I.K., Elektrokhimiya, 1994, vol. 30, no.5, p. 544.

    Google Scholar 

  23. Wachter, A., J. Amer. Chem. Soc., 1932, vol. 54, p. 4609.

    Article  Google Scholar 

  24. Wagner, C. and Engelhgard, G., Z. Phys. Chem., 1932, vol. 159, p. 241.

    Google Scholar 

  25. Kozaderov, O.A. and Vvedenskii, A.V., Kondens. sredy mezhfaz. granitsy, 2003, vol. 5, no.1, p. 32.

    Google Scholar 

  26. Kozaderov, O.A. and Vvedenskii, A.V., Zashch. Met., 2005, vol. 41, no.3, p. 1.

    Google Scholar 

  27. Pickering, H.W. and Wagner, C., J. Electrochem. Soc., 1967, vol. 114, no.7, p. 698.

    Google Scholar 

  28. Raleigh, D.O. and Growe, H.R., J. Electrochem. Soc., 1967, vol. 116, no.1, p. 40.

    Google Scholar 

  29. Larikov, L.N. and Isaichev, V.I., Diffuziya v metallakh i splavakh (Diffusion in Metals and Alloys), Kiev: Naukova Dumka, 1987.

    Google Scholar 

  30. Orlov, A.N. and Trushin, Yu.V., Energii tochechnykh defektov v metallakh (Energies of Point Defects in Metals), Moscow: Energoizdat, 1983.

    Google Scholar 

  31. Scheblykina, G.E., Bobrinskaya, E.V., and Vvedenskii, A.V., Zashch. Met., 1998, vol. 34, no.1, p. 11.

    Google Scholar 

  32. Kozaderov, O.A. and Vvedenskii, A.V., Elektrokhimiya, 2001, vol. 37, no.8, p. 929.

    Google Scholar 

  33. Vvedenskii, A.V., Elektrokhimiya, 1991, vol. 27, no.2, p. 256.

    Google Scholar 

  34. Vvedenskii, A.V. and Marshakov, I.K., Electrochim. Acta, 1991, vol. 36, no.8, p. 905.

    Article  Google Scholar 

  35. Vvedenskii, A.V. and Marshakov, I.K., Elektrokhimiya, 1995, vol. 31, no.2, p. 257.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zashchita Metallov, Vol. 41, No. 4, 2005, pp. 360–371.

Original Russian Text Copyright © 2005 by Kozaderov, Sazhneva, Koroleva, Vvedenskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozaderov, O.A., Sazhneva, O.V., Koroleva, O.V. et al. Solid-Phase Diffusion at a Potentiostatic Dissolution of Silver Alloyed with Gold. Prot Met 41, 329–340 (2005). https://doi.org/10.1007/s11124-005-0047-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11124-005-0047-7

Keywords

Navigation