Skip to main content

Advertisement

Log in

The measurement of productivity in the nonmarket sector

  • Published:
Journal of Productivity Analysis Aims and scope Submit manuscript

Abstract

In many sectors of the economy, governments either provide various services at no cost or at highly subsidized prices. Examples are the health, education and general government sectors. The System of National Accounts 1993 recommends valuing these nonmarket outputs at their costs of production but it does not give much guidance on exactly how to do this. In this paper, an explicit methodology is developed that enables one to construct these marginal cost prices. However, in the main text, an activity analysis approach is taken in order to simplify the analysis, so in particular, constant returns to scale, no substitution production functions for the specific activities in the nonmarket sector are assumed. It is shown that it is possible to obtain meaningful measures of Total Factor Productivity growth in this framework. An “Appendix” relaxes some of the restrictive assumptions that are used in the main text.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The literature on this topic dates back to Hicks (1940).

  2. More general technologies will be considered in the “Appendix”.

  3. The same analysis can be applied to any nonmarket service where there are outputs that can be measured in reasonably homogeneous quantity units. For a more realistic discussion of some of the problems that arise when measuring health sector outputs, see Yu and Ariste (2008).

  4. The vector a ti is the vector of inputoutput coefficients for the ith technology in period t. Note that the inputs include both intermediate and primary inputs.

  5. These assumptions are somewhat problematic due to the existence of fixed costs in hospitals. There are also problems associated with the allocation of overhead costs.

  6. This definition of technical progress for sector i is weaker than the alternative definition that the vector of period 1 input–output coefficients a 1i be equal to or less than the corresponding period 0 vector of input–output coefficients a 0i with a strict inequality for at least one component; i.e., the alternative (strong) definition of technical progress for sector i is a 1i  < a 0i where a 1i  < a 0i means a 1i  ≤ a 0i but a 1i  ≠ a 0i . Our weaker definition seems to be a more suitable one for the present purpose.

  7. For the definitions of the Laspeyres, Paasche and Fisher ideal price indexes, see Fisher (1922) and for a more comprehensive treatment of all types of index, see Balk (2008). The corresponding quantity indexes can be obtained from the same formulae but with the roles of prices and quantities reversed.

  8. See Atkinson (2005, 88–90) for a discussion on the valuation of nonmarket outputs and the differences between marginal cost and final demander valuations.

  9. In particular, Chapter 16 in Eurostat et al. (1993) notes that if we have quantity information on the numbers of various different types of tightly specified medical procedures, then Laspeyres or Paasche indexes can be calculated using sales as weights for market services and costs for nonmarket services. The situation is summarized in paragraphs 16.133 and 16.134 of the 1993 SNA on non-market goods and services which was written by Peter Hill. Paragraph 16.134 says: “In principle, volume measures may be compiled directly by calculating a weighted average of the quantity relatives for the various goods or services produced as outputs using the values of these goods and services as weights. Exactly the same method may be applied even when the output values have to be estimated on the basis of their costs of production.” SNA 2008 does not change the 1993 methodology; see Chapter 6 in Eurostat et al. (2008).

  10. Cost weighted Laspeyres type output quantity indexes of the type defined by (10) are used widely in the UK in recent years when constructing measures of nonmarket output quantity growth; see Mai (2004, 65), Pritchard (2004, 78) and Atkinson (2005, 88).

  11. In the “Appendix”, we show that when we relax the fixed coefficients assumption we are using here, the use of the Fisher index is clearly preferred over its Paasche and Laspeyres counterparts.

  12. It is easy to modify the Proposition and obtain the same results if we have no technical progress in one procedure but strict progress in the other.

  13. If it proves to be difficult or impossible to measure nonmarket output quantities, then economic statisticians have generally measured the value of nonmarket outputs by the value of inputs used and implicitly or explicitly set the price of nonmarket output equal to the corresponding nonmarket input price index. Atkinson (2005, 12) describes the situation in the UK prior to 1998 as follows: “In many countries, and in the United Kingdom from the early 1960s to 1998, the output of the government sector has been measured by convention as the value equal to the total value of inputs; by extension the volume of output has been measured by the volume of inputs. This convention regarding the volume of government output is referred to below as the (output = input) convention, and is contrasted with direct measures of government output. The inputs taken into account in recent years in the United Kingdom are the compensation of employees, the procurement costs of goods and services and a charge for the consumption of fixed capital. In earlier years and in other countries, including the United States, the inputs were limited to employment.” Note that the above conventions imply that capital services input for government owned capital will generally be less than the corresponding capital services input if the capital services were rented or leased. In the owned case, the government user cost of capital consists only of depreciation but in the leased case, the rental rate would cover the cost of depreciation plus the opportunity cost of the financial capital tied up in the capital input. Atkinson (2005, 49) makes the following recommendation on this issue: “We recommend that the appropriate measure of capital input for production and productivity analysis is the flow of capital services of an asset type. This involves adding to the capital consumption an interest charge, with an agreed interest rate, on the entire owned capital.” We concur with Atkinson’s recommendation.

  14. Paul Schreyer verbally suggested the unit value type methodology that is developed in this section.

  15. There is another implicit assumption here; i.e., we are assuming that it is possible to obtain estimates of the prices of the inputs that could have been used in period 0 if the new technology were available in period 0. Thus we are assuming that it is possible to obtain estimates of the period 0 input price vector w 02 for the new technology on a retrospective basis for period 0.

  16. For discussions on how to account for outlet substitution bias in the context of a consumer price index, see Diewert (1995, 1998) and Chap. 11 in the ILO (2004).

  17. See sections 16.133–16.135 in the SNA 1993.

  18. With the growth of incentive type regulatory regimes, there is increasing interest in forming output aggregates using marginal cost weights for prices in order to calculate the Total Factor Productivity growth of regulated firms; see Lawrence and Diewert (2006) for an extensive discussion of the issues. It should be noted that Lawrence and Diewert assumed separable technologies of the type considered in this paper.

  19. For background information on cost and production functions and their regularity conditions, see Diewert (1974).

  20. Obviously, in many situations where governments are in charge of producing the procedure outputs, this assumption will not be satisfied. However, in order to make some progress on our index number problems, we will make this assumption.

  21. These relationships are essentially due to our constant returns to scale assumptions.

  22. Our approach is a reasonably straightforward adaptation of the earlier work on theoretical price and quantity indexes by Konüs (1939), Fisher and Shell (1972), Samuelson and Swamy (1974), Archibald (1977) and Diewert (1980, 461, 1983, 1054–1083).

  23. Diewert (1997) explained why the geometric mean is a good choice for the symmetric average.

  24. See Fenchel (1953) or Mangasarian (1969, 84).

  25. The first equality in (42) follows from Euler’s Theorem on homogeneous functions and the fact that c 0i (wi) is linearly homogeneous in the components of the input price vector wi.

  26. This is a cost function analogue to the revenue function definitions of technical progress defined by Diewert (1983, 1063–1064), Diewert and Morrison (1986) and Kohli (1990).

  27. The decompositions of cost growth given by (49) and (50) are nonparametric analogues to the parametric revenue growth decompositions obtained by Diewert and Morrison (1986), Kohli (1990, 1991, 2003) and Fox and Kohli (1998) into explanatory factors.

  28. The first equality in (54) follows from Euler’s Theorem on homogeneous functions and the fact that C0(y0, w) is linearly homogeneous in the components of the input price vector w.

  29. This result can also be established by noting that x0 is a feasible (but not necessarily optimal) solution to the industry cost minimization problem defined by C0(y0, w1).

  30. This result can also be established by noting that x1 is a feasible (but not necessarily optimal) solution to the industry cost minimization problem defined by C1(y1, w0).

  31. See Fisher (1922) and Balk (2008).

  32. Yu (2011) uses this joint cost function framework to measure health and other nonmarket outputs.

  33. This assumption means that the overall technology is subject to constant returns to scale; i.e., the period t technology set St is a cone.

  34. This restriction means that the overall technology set St is a convex set.

  35. The first order Taylor series approximation to a convex function lies below (or is coincident with) the function.

  36. However, in general, QF will not be exactly equal to its theoretical counterpart αF and \( {\text{P}}_{\text{F}}^{*} \) will not be exactly equal to its theoretical counterpart βF. But when the three empirical growth factors are multiplied together, the various approximation errors cancel out to give an overall exact decomposition.

  37. This follows the recommendation of Diewert (1992, 196).

References

  • Archibald RB (1977) On the theory of industrial price measurement: output price indexes. Ann Econ Soc Meas 6:57–62

    Google Scholar 

  • Atkinson T (2005) Atkinson review: final report; measurement of government output and productivity for the national accounts. Palgrave Macmillan, New York

    Google Scholar 

  • Balk BM (2008) Price and quantity index numbers: models for measuring aggregate change and difference. Cambridge University Press, New York

    Book  Google Scholar 

  • Diewert WE (1974) Applications of duality theory. In: Intriligator MD, Kendrick DA (eds) Frontiers of quantitative economics, vol II. North-Holland, Amsterdam, pp 106–171. http://www.econ.ubc.ca/diewert/theory.pdf

  • Diewert WE (1980) Aggregation problems in the measurement of capital. In: Usher D (ed) The measurement of capital. The University of Chicago Press, Chicago, pp 433–528

    Google Scholar 

  • Diewert WE (1983) The theory of the output price index and the measurement of real output change. In: Diewert WE, Montmarquette C (eds) Price level measurement. Statistics Canada, Ottawa, pp 1049–1113

    Google Scholar 

  • Diewert WE (1992) The measurement of productivity. Bull Econ Res 44(3):163–198

    Article  Google Scholar 

  • Diewert WE (1995) Axiomatic and economic approaches to elementary price indexes. Discussion paper no. 95-01. Department of Economics, University of British Columbia, Vancouver

  • Diewert WE (1997) Commentary on Mathew D. Shapiro and David W. Wilcox: alternative strategies for aggregating price in the CPI. Fed Res Bank St. Louis Rev 79(3):127–137

    Google Scholar 

  • Diewert WE (1998) Index number issues in the consumer price index. J Econ Perspect 12(1):47–58

    Article  Google Scholar 

  • Diewert WE, Morrison CJ (1986) Adjusting output and productivity indexes for changes in the terms of trade. Econ J 96:659–679

    Article  Google Scholar 

  • Eurostat, IMF, OECD, UN and the World Bank (1993) System of national accounts 1993. The United Nations, New York

  • Eurostat, IMF, OECD, UN and the World Bank (2008) System of national accounts 1993. The United Nations, New York

  • Fenchel W (1953) Convex cones, sets and functions. Lecture Notes at Princeton University, Department of Mathematics, Princeton

  • Fisher I (1922) The making of index numbers. Houghton-Mifflin, Boston

    Google Scholar 

  • Fisher FM, Shell K (eds) (1972) The pure theory of the national output deflator. In: The economic theory of price indexes. Academic Press, New York, pp 49–113

  • Fox KJ, Kohli U (1998) GDP growth, terms of trade effects and total factor productivity. J Int Trade Econ Dev 7:87–110

    Article  Google Scholar 

  • Hicks JR (1940) On the valuation of the social income. Economica 7:105–124

    Article  Google Scholar 

  • International Labour Organization (ILO), Eurostat, IMF, OECD, World Bank and the UN (2004) Consumer price index manual: theory and practice. In: Hill P (ed) International Labour Organization, Geneva. http://www.ilo.org/public/english/bureau/stat/guides/cpi/index.htm

  • Kohli U (1990) Growth accounting in the open economy: parametric and nonparametric estimates. J Econ Soc Meas 16:125–136

    Google Scholar 

  • Kohli U (1991) Technology, duality and foreign trade: the GNP function approach to modeling imports and exports. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Kohli U (2003) Growth accounting in the open economy: international comparisons. Int Rev Econ Finance 12:417–435

    Article  Google Scholar 

  • Konüs AA (1939) The problem of the true index of the cost of living. Econometrica 7:10–29

    Article  Google Scholar 

  • Lawrence D, Diewert WE (2006) Regulating electricity networks: the ABC of setting X in New Zealand. In: Coelli T, Lawrence D (eds) Performance measurement and regulation of network utilities. Edward Elgar Publishing, Cheltenham, pp 207–241

    Google Scholar 

  • Mai N (2004) Measuring health care output in the UK: a diagnosis based approach. Economic Trends 610 (September), Office of National Statistics UK, pp 64–73

  • Mangasarian O (1969) Nonlinear Programming. McGraw-Hill, New York

    Google Scholar 

  • Pritchard A (2004) Measuring government health services output in the UK national accounts: the new methodology and further analysis. Economic Trends 613 (December), Office of National Statistics UK, pp 69–81

  • Samuelson PA, Swamy S (1974) Invariant economic index numbers and canonical duality: survey and synthesis. Am Econ Rev 64:566–593

    Google Scholar 

  • Shephard RW (1953) Cost and production functions. Princeton University Press, Princeton

    Google Scholar 

  • Yu K (2011) Measurement of government output. In: Diewert WE, Balk B, Fixler D, Fox K, Nakamura AO (eds) Essays on price and productivity measurement, vol 3. Trafford Publishing, Victoria (forthcoming)

  • Yu K, Ariste R (2008) Comparisons of hospital output in Canada: national and international perspectives. Paper presented to the 2008 world congress on national accounts and economic performance measures for nations, 12–17 May 2008, Washington, DC

Download references

Acknowledgments

The author thanks Ian Bobbin, Kevin Fox, Peter Hill, Denis Lawrence, Carl Obst, Paul Schreyer, Mick Silver, Kam Yu and two referees for helpful comments and the Australian Research Council and the SSHRC of Canada for financial support. None of the above are responsible for any opinions expressed in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Erwin Diewert.

Appendix: The measurement of output, input and productivity in the nonmarket sector for more general production functions

Appendix: The measurement of output, input and productivity in the nonmarket sector for more general production functions

In this “Appendix”, we will relax the assumption that the procedure production functions are of the fixed coefficients, no input substitution variety. Theoretical output, input and productivity indexes will be defined in this more general context and we will exhibit various observable indexes that can approximate these theoretical indexes to the accuracy of at least a first order approximation.

As in Sect. 2, we assume that there are two procedures in periods 0 and 1 but now we assume that there is a production function, f ti , for procedure i in period t where y ti  = f ti (x ti1 , x ti2 , …, x tiN(i) ) = f ti (x ti ) is the amount of output for procedure i that can be produced by the input vector x ti in period t for t = 0, 1 and i = 1, 2. We assume that each production function f ti (xi) is a nonnegative, increasing, continuous, concave and linearly homogeneous function in the components of its input vector xi. As in Sect. 2, we assume that in each period t, producers in sector i face the positive vector of input prices, w ti  ≡ [w ti1 , w ti2 , …, w tiN(i) ] for i = 1, 2 and t = 0, 1. For each period t and each sector i, the sector i total cost function C ti (yi, wi) associated with each procedure can be defined as follows:

$$ \begin{aligned} {\text{C}}_{\text{i}}^{\text{t}} ({\text{y}}_{\text{i}} ,{\text{w}}_{\text{i}} ) & \equiv { \min }_{{{\text{x}}^{\prime } {\text{s}}}} \{ {\text{w}}_{\text{i}} \cdot {\text{x}}_{\text{i}} :{\text{f}}_{\text{i}}^{\text{t}} ({\text{x}}_{\text{i}} ) \ge {\text{y}}_{\text{i}} \} ;\quad {\text{i}} = 1, 2;\;{\text{t}} = 0, 1\\ & = {\text{c}}_{\text{i}}^{\text{t}} ({\text{w}}_{\text{i}} ){\text{y}}_{\text{i}} \\ \end{aligned} $$
(26)

where c ti (wi) ≡ C ti (1, wi) is the period t unit cost function for sector i; i.e., it is equal to the minimum cost of producing one unit of sector i output using the period t technology if the sector faces the vector of input prices wi. The unit cost function c ti will satisfy the same regularity conditions as the production function f ti ; i.e., c ti (wi) will be a nonnegative, increasing, continuous, concave and linearly homogeneous function in the components of the input price vector wi.Footnote 19

We assume that in each period, producers minimize the cost of producing their procedure outputs.Footnote 20 Thus letting y ti and x ti denote the observed scalar output and input vector of sector i in period t, we will have the following equalities:

$$ {\text{w}}_{\text{i}}^{\text{t}} \cdot {\text{x}}_{\text{i}}^{\text{t}} = {\text{C}}_{\text{i}}^{\text{t}} \left( {{\text{y}}_{\text{i}}^{\text{t}} ,{\text{w}}_{\text{i}}^{\text{t}} } \right) = {\text{c}}_{\text{i}}^{\text{t}} \left( {{\text{w}}_{\text{i}}^{\text{t}} } \right){\text{y}}_{\text{i}}^{\text{t}} ;\quad {\text{i}} = 1, 2;\;{\text{t}} = 0, 1. $$
(27)

We also assume that each unit cost function is differentiable at the observed input prices for each sector and each period so that Shephard’s (1953, 11) Lemma implies the following relationships between the input quantity vectors x ti and the corresponding output levels y ti :

$$ {\text{x}}_{\text{i}}^{\text{t}} = \nabla_{\text{w}} {\text{C}}_{\text{i}}^{\text{t}} \left( {{\text{y}}_{\text{i}}^{\text{t}} ,{\text{w}}_{\text{i}}^{\text{t}} } \right) = \nabla_{\text{w}} {\text{c}}_{\text{i}}^{\text{t}} \left( {{\text{w}}_{\text{i}}^{\text{t}} } \right){\text{y}}_{\text{i}}^{\text{t}} ;\quad {\text{i}} = 1, 2;\;{\text{t}} = 0, 1. $$
(28)

The observed input–output vectors a ti for each sector i and each time period can be defined as the observed input vectors x ti divided by the corresponding output levels y ti :

$$ {\text{a}}_{\text{i}}^{\text{t}} \equiv {{{\text{x}}_{\text{i}}^{\text{t}} } \mathord{\left/ {\vphantom {{{\text{x}}_{\text{i}}^{\text{t}} } {{\text{y}}_{\text{i}}^{\text{t}} }}} \right. \kern-\nulldelimiterspace} {{\text{y}}_{\text{i}}^{\text{t}} }};\quad {\text{i}} = 1, 2;\;{\text{t}} = 0, 1. $$
(29)

Comparing (28) with (29) shows that the vectors of first order partial derivatives of the unit cost functions, ∇wc ti (w ti ), are also observable and are equal to the corresponding input–output vectors a ti :

$$ \nabla_{\text{w}} {\text{c}}_{\text{i}}^{\text{t}} \left( {{\text{w}}_{\text{i}}^{\text{t}} } \right) = {\text{a}}_{\text{i}}^{\text{t}} ;\quad {\text{i}} = 1, 2;\;{\text{t}} = 0, 1. $$
(30)

The period t unit cost for sector i, c ti (w ti ), are also observable and can serve as our cost based output prices p ti for units of output in sector i during period t; i.e., define the output prices p ti as follows:

$$ {\text{p}}_{\text{i}}^{\text{t}} \equiv {\text{c}}_{\text{i}}^{\text{t}} \left( {{\text{w}}_{\text{i}}^{\text{t}} } \right) = {\text{w}}_{\text{i}}^{\text{t}} \cdot {\text{a}}_{\text{i}}^{\text{t}} = {{{\text{w}}_{\text{i}}^{\text{t}} \cdot {\text{x}}_{\text{i}}^{\text{t}} } \mathord{\left/ {\vphantom {{{\text{w}}_{\text{i}}^{\text{t}} \cdot {\text{x}}_{\text{i}}^{\text{t}} } {{\text{y}}_{\text{i}}^{\text{t}} }}} \right. \kern-\nulldelimiterspace} {{\text{y}}_{\text{i}}^{\text{t}} }};\quad {\text{i}} = 1, 2;\;{\text{t}} = 0, 1. $$
(31)

Definitions (31) imply the following relationships between the value of output p ti y ti and the value of input w ti  · x ti in sector i for period t:Footnote 21

$$ {\text{p}}_{\text{i}}^{\text{t}} {\text{y}}_{\text{i}}^{\text{t}} = {\text{c}}_{\text{i}}^{\text{t}} \left( {{\text{w}}_{\text{i}}^{\text{t}} } \right){\text{y}}_{\text{i}}^{\text{t}} = {\text{w}}_{\text{i}}^{\text{t}} \cdot {\text{x}}_{\text{i}}^{\text{t}} ;\quad {\text{i}} = 1, 2;\;{\text{t}} = 0, 1. $$
(32)

We now in a position to define the health sector’s period t total cost function, Ct, but first we require some further notation. Let y ≡ [y1, y2] be a two dimensional reference vector of possible health sector outputs and let w ≡ [w1, w2] be an N(1) + N(2) dimensional vector of reference input prices. Define the health sector’s period t total cost function Ct as the sum of the period t procedure cost functions:

$$ \begin{aligned} {\text{C}}^{\text{t}} ({\text{y}},{\text{w}}) & \equiv {\text{C}}_{ 1}^{\text{t}} ({\text{y}}_{ 1} ,{\text{w}}_{ 1} ) + {\text{C}}_{ 2}^{\text{t}} ({\text{y}}_{ 2} ,{\text{w}}_{ 2} );\quad {\text{t}} = 0, 1\\ & = {\text{c}}_{ 1}^{\text{t}} ({\text{w}}_{ 1} ){\text{y}}_{ 1} + {\text{c}}_{ 2}^{\text{t}} ({\text{w}}_{ 2} ){\text{y}}_{ 2} \quad {\text{using}}\, ( 2 7 ). \\ \end{aligned} $$
(33)

We will use the sector’s total cost function Ct(y, w) in order to define indexes of health sector technical progress, output growth and input price growth going from period 0 to period 1 in what follows.Footnote 22 As a preliminary step, insert the data pertaining to period t into definition (33) and we obtain the following equations:

$$ \begin{aligned} {\text{C}}^{\text{t}} \left( {{\text{y}}^{\text{t}} ,{\text{w}}^{\text{t}} } \right) & = {\text{c}}_{ 1}^{\text{t}} \left( {{\text{w}}_{ 1}^{\text{t}} } \right){\text{y}}_{ 1}^{\text{t}} + {\text{c}}_{ 2}^{\text{t}} \left( {{\text{w}}_{ 2}^{\text{t}} } \right){\text{y}}_{ 2}^{\text{t}} ;\quad {\text{t}} = 0, 1\\ & = {\text{w}}_{ 1}^{\text{t}} \cdot {\text{x}}_{ 1}^{\text{t}} + {\text{w}}_{ 2}^{\text{t}} \cdot {\text{x}}_{ 2}^{\text{t}} \quad {\text{using}}\, ( 3 2 )\\ & = {\text{p}}_{ 1}^{\text{t}} {\text{y}}_{ 1}^{\text{t}} + {\text{p}}_{ 2}^{\text{t}} {\text{y}}_{ 2}^{\text{t}} \quad {\text{using}}\, ( 3 1 ). \\ \end{aligned} $$
(34)

We now use the total cost function in order to define a family of cost based output quantity indexes, α(y0, y1, w, t), as follows:

$$ \begin{aligned} \alpha \left( {{\text{y}}^{0} ,{\text{y}}^{ 1} ,{\text{w}},{\text{t}}} \right) & \equiv {{{\text{C}}^{\text{t}} \left( {{\text{y}}^{ 1} ,{\text{w}}} \right)} \mathord{\left/ {\vphantom {{{\text{C}}^{\text{t}} \left( {{\text{y}}^{ 1} ,{\text{w}}} \right)} {{\text{C}}^{\text{t}} \left( {{\text{y}}^{0} ,{\text{w}}} \right)}}} \right. \kern-\nulldelimiterspace} {{\text{C}}^{\text{t}} \left( {{\text{y}}^{0} ,{\text{w}}} \right)}} \\ & = {{\left[ {{\text{c}}_{ 1}^{\text{t}} ({\text{w}}_{ 1} ){\text{y}}_{ 1}^{ 1} + {\text{c}}_{ 2}^{\text{t}} ({\text{w}}_{ 2} ){\text{y}}_{ 2}^{ 1} } \right]} \mathord{\left/ {\vphantom {{\left[ {{\text{c}}_{ 1}^{\text{t}} ({\text{w}}_{ 1} ){\text{y}}_{ 1}^{ 1} + {\text{c}}_{ 2}^{\text{t}} ({\text{w}}_{ 2} ){\text{y}}_{ 2}^{ 1} } \right]} {\left[ {{\text{c}}_{ 1}^{\text{t}} \left( {{\text{w}}_{ 1} } \right){\text{y}}_{ 1}^{0} + {\text{ c}}_{ 2}^{\text{t}} \left( {{\text{w}}_{ 2} } \right){\text{y}}_{ 2}^{0} } \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {{\text{c}}_{ 1}^{\text{t}} \left( {{\text{w}}_{ 1} } \right){\text{y}}_{ 1}^{0} + {\text{ c}}_{ 2}^{\text{t}} \left( {{\text{w}}_{ 2} } \right){\text{y}}_{ 2}^{0} } \right]}}\quad {\text{using}}\, ( 3 3 ). \\ \end{aligned} $$
(35)

Thus the theoretical output quantity index α(y0, y1, w, t) defined by (35) is equal to the (hypothetical) total cost Ct(y1, w) of producing the vector of observed period 1 procedure outputs, y1 ≡ [y 11 , y 12 ], divided by the total cost Ct(y0, w) of producing the vector of observed period 0 procedure outputs, y0 ≡ [y 01 , y 02 ], where in both cases, we use the technology of period t and assume that the service providers face the vector of reference input prices, w ≡ [w1, w2], where wi is a reference vector of input prices for sector i. Thus for each choice of technology (i.e., t could equal 0 or 1) and for each choice of a reference vector of input prices w, we obtain a (different) cost based output quantity index.

Following the example of Konüs (1939), it is natural to single out two special cases of the family of output quantity indexes defined by (35): one choice where we use the period 0 technology and set the reference prices equal to the period 0 input prices w0 ≡ [w 01 , w 02 ] and another choice where we use the period 1 technology and set the reference prices equal to the period 1 input prices w1 ≡ [w 11 , w 12 ]. Thus define these special cases as α0 and α1:

$$ \begin{aligned} \alpha_{0} & \equiv \alpha \left( {{\text{y}}^{0} ,{\text{y}}^{ 1} ,{\text{w}}^{0} ,0} \right) \\ & = {{\left[ {{\text{c}}_{ 1}^{0} \left( {{\text{w}}_{ 1}^{0} } \right){\text{y}}_{ 1}^{ 1} + {\text{ c}}_{ 2}^{0} \left( {{\text{w}}_{ 2}^{0} } \right){\text{y}}_{ 2}^{ 1} } \right]} \mathord{\left/ {\vphantom {{\left[ {{\text{c}}_{ 1}^{0} \left( {{\text{w}}_{ 1}^{0} } \right){\text{y}}_{ 1}^{ 1} + {\text{ c}}_{ 2}^{0} \left( {{\text{w}}_{ 2}^{0} } \right){\text{y}}_{ 2}^{ 1} } \right]} {\left[ {{\text{c}}_{ 1}^{0} \left( {{\text{w}}_{ 1}^{0} } \right){\text{y}}_{ 1}^{0} + {\text{ c}}_{ 2}^{0} \left( {{\text{w}}_{ 2}^{0} } \right){\text{y}}_{ 2}^{0} } \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {{\text{c}}_{ 1}^{0} \left( {{\text{w}}_{ 1}^{0} } \right){\text{y}}_{ 1}^{0} + {\text{ c}}_{ 2}^{0} \left( {{\text{w}}_{ 2}^{0} } \right){\text{y}}_{ 2}^{0} } \right]}}\quad {\text{using}}\, ( 3 5 )\\ & = {{\left[ {{\text{p}}_{ 1}^{0} {\text{y}}_{ 1}^{ 1} + {\text{ p}}_{ 2}^{0} {\text{y}}_{ 2}^{ 1} } \right]} \mathord{\left/ {\vphantom {{\left[ {{\text{p}}_{ 1}^{0} {\text{y}}_{ 1}^{ 1} + {\text{ p}}_{ 2}^{0} {\text{y}}_{ 2}^{ 1} } \right]} {\left[ {{\text{p}}_{ 1}^{0} {\text{y}}_{ 1}^{0} + {\text{ p}}_{ 2}^{0} {\text{y}}_{ 2}^{0} } \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {{\text{p}}_{ 1}^{0} {\text{y}}_{ 1}^{0} + {\text{ p}}_{ 2}^{0} {\text{y}}_{ 2}^{0} } \right]}}\quad {\text{using}}\, ( 3 1 )\\ & = {\text{Q}}_{\text{L}} \quad {\text{using}}\, ( 1 0 ); \\ \end{aligned} $$
(36)
$$ \begin{aligned} \alpha_{ 1} & \equiv \alpha \left( {{\text{y}}^{0} ,{\text{y}}^{ 1} ,{\text{w}}^{ 1} , 1} \right) \\ & = {{\left[ {{\text{c}}_{ 1}^{ 1} \left( {{\text{w}}_{ 1}^{ 1} } \right){\text{y}}_{ 1}^{ 1} + {\text{ c}}_{ 2}^{ 1} \left( {{\text{w}}_{ 2}^{ 1} } \right){\text{y}}_{ 2}^{ 1} } \right]} \mathord{\left/ {\vphantom {{\left[ {{\text{c}}_{ 1}^{ 1} \left( {{\text{w}}_{ 1}^{ 1} } \right){\text{y}}_{ 1}^{ 1} + {\text{ c}}_{ 2}^{ 1} \left( {{\text{w}}_{ 2}^{ 1} } \right){\text{y}}_{ 2}^{ 1} } \right]} {\left[ {{\text{c}}_{ 1}^{ 1} \left( {{\text{w}}_{ 1}^{ 1} } \right){\text{y}}_{ 1}^{0} + {\text{ c}}_{ 2}^{ 1} \left( {{\text{w}}_{ 2}^{ 1} } \right){\text{y}}_{ 2}^{0} } \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {{\text{c}}_{ 1}^{ 1} \left( {{\text{w}}_{ 1}^{ 1} } \right){\text{y}}_{ 1}^{0} + {\text{ c}}_{ 2}^{ 1} \left( {{\text{w}}_{ 2}^{ 1} } \right){\text{y}}_{ 2}^{0} } \right]}}\quad {\text{using}}\, ( 3 5 )\\ & = {{\left[ {{\text{p}}_{ 1}^{ 1} {\text{y}}_{ 1}^{ 1} + {\text{ p}}_{ 2}^{ 1} {\text{y}}_{ 2}^{ 1} } \right]} \mathord{\left/ {\vphantom {{\left[ {{\text{p}}_{ 1}^{ 1} {\text{y}}_{ 1}^{ 1} + {\text{ p}}_{ 2}^{ 1} {\text{y}}_{ 2}^{ 1} } \right]} {\left[ {{\text{p}}_{ 1}^{ 1} {\text{y}}_{ 1}^{0} + {\text{ p}}_{ 2}^{ 1} {\text{y}}_{ 2}^{0} } \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {{\text{p}}_{ 1}^{ 1} {\text{y}}_{ 1}^{0} + {\text{ p}}_{ 2}^{ 1} {\text{y}}_{ 2}^{0} } \right]}}\quad {\text{using}}\, ( 3 1 )\\ & = {\text{Q}}_{\text{P}} \quad {\text{using}}\, ( 1 1 ). \\ \end{aligned} $$
(37)

Thus the theoretical cost based output quantity index α0 that uses the period 0 technology and period 0 input prices w0 is equal to the observable Laspeyres output quantity index QL that was defined earlier in the main text by (10) and the theoretical cost based output quantity index α1 that uses the period 1 technology and period 1 input prices w1 is equal to the observable Paasche output quantity index QP that was defined earlier by (11). Since both theoretical output quantity indexes, α0 and α1, are equally representative, a single estimate of cost based output quantity growth should be set equal to a symmetric average of these two estimates. We will choose the geometric mean as our preferred symmetric averageFootnote 23 and thus our preferred theoretical measure of cost based output quantity growth is the following Fisher type theoretical index, αF:

$$ \begin{aligned} \alpha_{\text{F}} & \equiv [\alpha_{0} \alpha_{ 1} ]^{ 1/ 2} \\ & = \left[ {{\text{Q}}_{\text{L}} {\text{Q}}_{\text{P}} } \right]^{ 1/ 2} \quad {\text{using}}\, ( 3 6 )\,{\text{and}}\, ( 3 7 )\\ & = {\text{Q}}_{\text{F}} \quad {\text{using}}\,{\text{definition}}\, ( 1 2 ). \\ \end{aligned} $$
(38)

Thus our preferred measure of cost based output growth is equal to the observable Fisher quantity index, QF, which was defined earlier by (12) in the main text.

We now turn our attention to theoretical measures of input price growth. We now use the total cost function in order to define a family of input price indexes, β(w0, w1, y, t), as follows:

$$ \begin{aligned} \beta \left( {{\text{w}}^{0} ,{\text{w}}^{ 1} ,{\text{y}},{\text{t}}} \right) & \equiv {\text{C}}^{\text{t}} {{\left( {{\text{y}},{\text{w}}^{ 1} } \right)} \mathord{\left/ {\vphantom {{\left( {{\text{y}},{\text{w}}^{ 1} } \right)} {{\text{C}}^{\text{t}} \left( {{\text{y}},{\text{w}}^{0} } \right)}}} \right. \kern-\nulldelimiterspace} {{\text{C}}^{\text{t}} \left( {{\text{y}},{\text{w}}^{0} } \right)}} \\ & = {{\left[ {{\text{c}}_{ 1}^{\text{t}} \left( {{\text{w}}_{ 1}^{ 1} } \right){\text{y}}_{ 1} + {\text{ c}}_{ 2}^{\text{t}} \left( {{\text{w}}_{ 2}^{ 1} } \right){\text{y}}_{ 2} } \right]} \mathord{\left/ {\vphantom {{\left[ {{\text{c}}_{ 1}^{\text{t}} \left( {{\text{w}}_{ 1}^{ 1} } \right){\text{y}}_{ 1} + {\text{ c}}_{ 2}^{\text{t}} \left( {{\text{w}}_{ 2}^{ 1} } \right){\text{y}}_{ 2} } \right]} {\left[ {{\text{c}}_{ 1}^{\text{t}} \left( {{\text{w}}_{ 1}^{0} } \right){\text{y}}_{ 1} + {\text{ c}}_{ 2}^{\text{t}} \left( {{\text{w}}_{ 2}^{0} } \right){\text{y}}_{ 2} } \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {{\text{c}}_{ 1}^{\text{t}} \left( {{\text{w}}_{ 1}^{0} } \right){\text{y}}_{ 1} + {\text{ c}}_{ 2}^{\text{t}} \left( {{\text{w}}_{ 2}^{0} } \right){\text{y}}_{ 2} } \right]}}\quad {\text{using}}\, ( 3 3 ). \\ \end{aligned} $$
(39)

Thus the theoretical output quantity index β(w0, w1, y, t) defined by (39) is equal to the (hypothetical) total cost Ct(y, w1) of producing the reference vector of outputs, y ≡ [y1, y2], when the service providers face the period 1 observed vector of input prices w1, divided by the total cost Ct(y, w0) of producing the same reference vector of outputs, y, when the service providers face the period 0 observed vector of input prices w0, where in both cases, we use the technology of period t. Thus for each choice of technology (i.e., t could equal 0 or 1) and for each choice of a reference vector of output quantities y, we obtain a (different) input price index.

Again following the example of Konüs (1939) in his analysis of the true cost of living index, it is natural to single out two special cases of the family of input price indexes defined by (39): one choice where we use the period 0 technology and set the reference quantities equal to the period 0 quantities y0 ≡ [y 01 , y 02 ] and another choice where we use the period 1 technology and set the reference quantities equal to the period 1 quantities y1 ≡ [y 11 , y 12 ]. Thus define these special cases as β0 and β1:

$$ \begin{aligned} \beta_{0} & \equiv \beta \left( {{\text{w}}^{0} ,{\text{w}}^{ 1} ,{\text{y}}^{0} ,0} \right) \\ & = {{\left[ {{\text{c}}_{ 1}^{0} \left( {{\text{w}}_{ 1}^{ 1} } \right){\text{y}}_{ 1}^{0} + {\text{ c}}_{ 2}^{0} \left( {{\text{w}}_{ 2}^{ 1} } \right){\text{y}}_{ 2}^{0} } \right]} \mathord{\left/ {\vphantom {{\left[ {{\text{c}}_{ 1}^{0} \left( {{\text{w}}_{ 1}^{ 1} } \right){\text{y}}_{ 1}^{0} + {\text{ c}}_{ 2}^{0} \left( {{\text{w}}_{ 2}^{ 1} } \right){\text{y}}_{ 2}^{0} } \right]} {\left[ {{\text{c}}_{ 1}^{0} \left( {{\text{w}}_{ 1}^{0} } \right){\text{y}}_{ 1}^{0} + {\text{ c}}_{ 2}^{0} \left( {{\text{w}}_{ 2}^{0} } \right){\text{y}}_{ 2}^{0} } \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {{\text{c}}_{ 1}^{0} \left( {{\text{w}}_{ 1}^{0} } \right){\text{y}}_{ 1}^{0} + {\text{ c}}_{ 2}^{0} \left( {{\text{w}}_{ 2}^{0} } \right){\text{y}}_{ 2}^{0} } \right]}}\quad {\text{using}}\, ( 3 9 )\\ & = {{\left[ {{\text{c}}_{ 1}^{0} \left( {{\text{w}}_{ 1}^{ 1} } \right){\text{y}}_{ 1}^{0} + {\text{ c}}_{ 2}^{0} \left( {{\text{w}}_{ 2}^{ 1} } \right){\text{y}}_{ 2}^{0} } \right]} \mathord{\left/ {\vphantom {{\left[ {{\text{c}}_{ 1}^{0} \left( {{\text{w}}_{ 1}^{ 1} } \right){\text{y}}_{ 1}^{0} + {\text{ c}}_{ 2}^{0} \left( {{\text{w}}_{ 2}^{ 1} } \right){\text{y}}_{ 2}^{0} } \right]} {\left[ {{\text{w}}_{ 1}^{0} \cdot {\text{x}}_{ 1}^{0} + {\text{ w}}_{ 2}^{0} \cdot {\text{x}}_{ 2}^{0} } \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {{\text{w}}_{ 1}^{0} \cdot {\text{x}}_{ 1}^{0} + {\text{ w}}_{ 2}^{0} \cdot {\text{x}}_{ 2}^{0} } \right]}}\quad {\text{using}}\, ( 3 4 ); \\ \end{aligned} $$
(40)
$$ \begin{aligned} \beta_{ 1} & \equiv \beta \left( {{\text{w}}^{0} ,{\text{w}}^{ 1} ,{\text{y}}^{ 1} , 1} \right) \\ & = {{\left[ {{\text{c}}_{ 1}^{ 1} \left( {{\text{w}}_{ 1}^{ 1} } \right){\text{y}}_{ 1}^{ 1} + {\text{ c}}_{ 2}^{ 1} \left( {{\text{w}}_{ 2}^{ 1} } \right){\text{y}}_{ 2}^{ 1} } \right]} \mathord{\left/ {\vphantom {{\left[ {{\text{c}}_{ 1}^{ 1} \left( {{\text{w}}_{ 1}^{ 1} } \right){\text{y}}_{ 1}^{ 1} + {\text{ c}}_{ 2}^{ 1} \left( {{\text{w}}_{ 2}^{ 1} } \right){\text{y}}_{ 2}^{ 1} } \right]} {\left[ {{\text{c}}_{ 1}^{ 1} \left( {{\text{w}}_{ 1}^{0} } \right){\text{y}}_{ 1}^{ 1} + {\text{ c}}_{ 2}^{ 1} \left( {{\text{w}}_{ 2}^{0} } \right){\text{y}}_{ 2}^{ 1} } \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {{\text{c}}_{ 1}^{ 1} \left( {{\text{w}}_{ 1}^{0} } \right){\text{y}}_{ 1}^{ 1} + {\text{ c}}_{ 2}^{ 1} \left( {{\text{w}}_{ 2}^{0} } \right){\text{y}}_{ 2}^{ 1} } \right]}}\quad {\text{using}}\, ( 3 9 )\\ & = {{\left[ {{\text{w}}_{ 1}^{ 1} \cdot {\text{x}}_{ 1}^{ 1} + {\text{ w}}_{ 2}^{ 1} \cdot {\text{x}}_{ 2}^{ 1} } \right]} \mathord{\left/ {\vphantom {{\left[ {{\text{w}}_{ 1}^{ 1} \cdot {\text{x}}_{ 1}^{ 1} + {\text{ w}}_{ 2}^{ 1} \cdot {\text{x}}_{ 2}^{ 1} } \right]} {\left[ {{\text{c}}_{ 1}^{ 1} \left( {{\text{w}}_{ 1}^{0} } \right){\text{y}}_{ 1}^{ 1} + {\text{ c}}_{ 2}^{ 1} \left( {{\text{w}}_{ 2}^{0} } \right){\text{y}}_{ 2}^{ 1} } \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {{\text{c}}_{ 1}^{ 1} \left( {{\text{w}}_{ 1}^{0} } \right){\text{y}}_{ 1}^{ 1} + {\text{ c}}_{ 2}^{ 1} \left( {{\text{w}}_{ 2}^{0} } \right){\text{y}}_{ 2}^{ 1} } \right]}}\quad {\text{using}}\, ( 3 4 ). \\ \end{aligned} $$
(41)

We now encounter a problem: the hypothetical unit costs c 0i (w 1i ) and c 1i (w 0i ) which appear in (40) and (41) are not observable so we cannot calculate the theoretical input price indexes β0 and β1. However, we can find bounds to these indexes as well as first order Taylor series approximations to them, which are observable, as we now show.

As mentioned above, the unit cost functions, c ti (wi) are concave functions in their input price variables wi. It is well known that the first order Taylor series approximation to a concave function lies above (or is coincident with) the concave functionFootnote 24 so we have the following inequalities:Footnote 25

$$ \begin{aligned} {\text{c}}_{\text{i}}^{0} \left( {{\text{w}}_{\text{i}}^{ 1} } \right) & \le {\text{c}}_{\text{i}}^{0} \left( {{\text{w}}_{\text{i}}^{0} } \right) + \nabla_{\text{w}} {\text{c}}_{\text{i}}^{0} \left( {{\text{w}}_{\text{i}}^{0} } \right) \cdot \left[ {{\text{w}}_{\text{i}}^{ 1} - {\text{ w}}_{\text{i}}^{0} } \right];\quad {\text{ i}} = 1, 2\\ & = {\text{w}}_{\text{i}}^{ 1} \cdot \nabla_{\text{w}} {\text{c}}_{\text{i}}^{0} \left( {{\text{w}}_{\text{i}}^{0} } \right)\quad {\text{since}}\,{\text{w}}_{\text{i}}^{ 1} \cdot \nabla_{\text{w}} {\text{c}}_{\text{i}}^{0} \left( {{\text{w}}_{\text{i}}^{0} } \right) = {\text{c}}_{\text{i}}^{0} \left( {{\text{w}}_{\text{i}}^{0} } \right) \\ & = {\text{w}}_{\text{i}}^{ 1} \cdot {\text{a}}_{\text{i}}^{0} \quad {\text{using}}\, ( 30 ). \\ \end{aligned} $$
(42)

The gap between the right and left hand sides of (42) represents input substitution bias. In the main text, we assumed Leontief no substitution type procedure production functions and so there was no substitution bias; i.e., under our main text assumptions, the inequalities in (42) were equalities. Now multiply both sides of inequality i in (42) by y 0i and we obtain the following inequalities:

$$ \begin{aligned} {\text{c}}_{\text{i}}^{0} \left( {{\text{w}}_{\text{i}}^{ 1} } \right){\text{y}}_{\text{i}}^{0} & \le {\text{w}}_{\text{i}}^{ 1} \cdot {\text{a}}_{\text{i}}^{0} {\text{y}}_{\text{i}}^{0} ;\quad {\text{ i}} = 1, 2\\ & = {\text{w}}_{\text{i}}^{ 1} \cdot {\text{x}}_{\text{i}}^{0} \quad {\text{using}}\, ( 2 9 ). \\ \end{aligned} $$
(43)

In a similar fashion, we can establish the following inequalities:

$$ {\text{c}}_{\text{i}}^{ 1} \left( {{\text{w}}_{\text{i}}^{0} } \right){\text{y}}_{\text{i}}^{ 1} \le {\text{w}}_{\text{i}}^{0} \cdot {\text{x}}_{\text{i}}^{ 1} ;\quad {\text{i}} = 1, 2. $$
(44)

We now return to the theoretical input price indexes defined by (40) and (41). From (40), we have:

$$ \begin{aligned} \beta_{0} & = {{\left[ {{\text{c}}_{ 1}^{0} \left( {{\text{w}}_{ 1}^{ 1} } \right){\text{y}}_{ 1}^{0} + {\text{ c}}_{ 2}^{0} \left( {{\text{w}}_{ 2}^{ 1} } \right){\text{y}}_{ 2}^{0} } \right]} \mathord{\left/ {\vphantom {{\left[ {{\text{c}}_{ 1}^{0} \left( {{\text{w}}_{ 1}^{ 1} } \right){\text{y}}_{ 1}^{0} + {\text{ c}}_{ 2}^{0} \left( {{\text{w}}_{ 2}^{ 1} } \right){\text{y}}_{ 2}^{0} } \right]} {\left[ {{\text{w}}_{ 1}^{0} \cdot {\text{x}}_{ 1}^{0} + {\text{ w}}_{ 2}^{0} \cdot {\text{x}}_{ 2}^{0} } \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {{\text{w}}_{ 1}^{0} \cdot {\text{x}}_{ 1}^{0} + {\text{ w}}_{ 2}^{0} \cdot {\text{x}}_{ 2}^{0} } \right]}} \\ & \le {{\left[ {{\text{w}}_{ 1}^{ 1} \cdot {\text{x}}_{ 1}^{0} + {\text{ w}}_{ 2}^{ 1} \cdot {\text{x}}_{ 2}^{0} } \right]} \mathord{\left/ {\vphantom {{\left[ {{\text{w}}_{ 1}^{ 1} \cdot {\text{x}}_{ 1}^{0} + {\text{ w}}_{ 2}^{ 1} \cdot {\text{x}}_{ 2}^{0} } \right]} {\left[ {{\text{w}}_{ 1}^{0} \cdot {\text{x}}_{ 1}^{0} + {\text{ w}}_{ 2}^{0} \cdot {\text{x}}_{ 2}^{0} } \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {{\text{w}}_{ 1}^{0} \cdot {\text{x}}_{ 1}^{0} + {\text{ w}}_{ 2}^{0} \cdot {\text{x}}_{ 2}^{0} } \right]}}\quad {\text{using}}\, ( 4 3 )\\ & \equiv {\text{P}}_{\text{L}}^{*} \\ \end{aligned} $$
(45)

where the observable Laspeyres input price index \( {\text{P}}_{\text{L}}^{*} \) is defined as [w 11  · x 01  + w 12  · x 02 ]/[w 01  · x 01  + w 02  · x 02 ]. Similarly, from (41), we have:

$$ \begin{gathered} \beta_{ 1} = {{\left[ {{\text{w}}_{ 1}^{ 1} \cdot {\text{x}}_{ 1}^{ 1} + {\text{ w}}_{ 2}^{ 1} \cdot {\text{x}}_{ 2}^{ 1} } \right]} \mathord{\left/ {\vphantom {{\left[ {{\text{w}}_{ 1}^{ 1} \cdot {\text{x}}_{ 1}^{ 1} + {\text{ w}}_{ 2}^{ 1} \cdot {\text{x}}_{ 2}^{ 1} } \right]} {\left[ {{\text{c}}_{ 1}^{ 1} \left( {{\text{w}}_{ 1}^{0} } \right){\text{y}}_{ 1}^{ 1} + {\text{ c}}_{ 2}^{ 1} \left( {{\text{w}}_{ 2}^{0} } \right){\text{y}}_{ 2}^{ 1} } \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {{\text{c}}_{ 1}^{ 1} \left( {{\text{w}}_{ 1}^{0} } \right){\text{y}}_{ 1}^{ 1} + {\text{ c}}_{ 2}^{ 1} \left( {{\text{w}}_{ 2}^{0} } \right){\text{y}}_{ 2}^{ 1} } \right]}} \hfill \\ \ge {{\left[ {{\text{w}}_{ 1}^{ 1} \cdot {\text{x}}_{ 1}^{ 1} + {\text{ w}}_{ 2}^{ 1} \cdot {\text{x}}_{ 2}^{ 1} } \right]} \mathord{\left/ {\vphantom {{\left[ {{\text{w}}_{ 1}^{ 1} \cdot {\text{x}}_{ 1}^{ 1} + {\text{ w}}_{ 2}^{ 1} \cdot {\text{x}}_{ 2}^{ 1} } \right]} {\left[ {{\text{w}}_{ 1}^{0} \cdot {\text{x}}_{ 1}^{ 1} + {\text{ w}}_{ 2}^{0} \cdot {\text{x}}_{ 2}^{ 1} } \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {{\text{w}}_{ 1}^{0} \cdot {\text{x}}_{ 1}^{ 1} + {\text{ w}}_{ 2}^{0} \cdot {\text{x}}_{ 2}^{ 1} } \right]}}\quad {\text{using}}\, ( 4 4 )\hfill \\ \equiv {\text{P}}_{\text{P}}^{*} \hfill \\ \end{gathered} $$
(46)

where the observable Paasche input price index \( {\text{P}}_{\text{P}}^{*} \) is defined as [w 11  · x 11  + w 12  · x 12 ]/[w 01  · x 11  + w 02  · x 12 ]. Thus the theoretical input price index β0 is bounded from above by the observable Laspeyres input price index \( {\text{P}}_{\text{L}}^{*} \) and the theoretical input price index β1 is bounded from below by the observable Paasche input price index \( {\text{P}}_{\text{P}}^{*} \). In both cases, the gap between the theoretical index and the observable index is due to input substitution bias, which goes in opposite directions.

Looking at the first line in (42), it can be seen that the right hand sides of (43) and (44) are first order Taylor series approximations to the corresponding left hand side entries. This means that \( {\text{P}}_{\text{L}}^{*} \) is a first order approximation to the theoretical input price index β0 and \( {\text{P}}_{\text{P}}^{*} \) is a first order approximation to the theoretical input price index β1.

Since both theoretical input price indexes, β0 and β1, are equally representative, a single estimate of input price change should be set equal to a symmetric average of these two estimates. We again choose the geometric mean as our preferred symmetric average and thus our preferred theoretical measure of input price growth is the following Fisher type theoretical index, βF:

$$ \begin{aligned} \beta_{\text{F}} & \equiv [\beta_{0} \beta_{ 1} ]^{ 1/ 2} \\ & \approx \left[ {{\text{P}}_{\text{L}}^{*} {\text{P}}_{\text{P}}^{*} } \right]^{ 1/ 2} \\ & \equiv {\text{P}}_{\text{F}}^{*} \\ \end{aligned} $$
(47)

where the Fisher (1922) index of input price change, \( {\text{P}}_{\text{F}}^{*} \), is defined as the geometric mean of the Laspeyres and Paasche input price indexes. Given the fact that \( {\text{P}}_{\text{L}}^{*} \) is a first order approximation to β0 and \( {\text{P}}_{\text{P}}^{*} \) is a first order approximation to β1, it is obvious that \( {\text{P}}_{\text{F}}^{*} \) is at least a first order approximation to the theoretical input price index βF. But in most cases, the approximation of \( {\text{P}}_{\text{F}}^{*} \) to βF will be much better than a first order approximation since the upward bias in \( {\text{P}}_{\text{L}}^{*} \) will generally offset the downward bias in \( {\text{P}}_{\text{P}}^{*} \).

We now define our last family of theoretical indexes. We again use the total cost function in order to define a family of reciprocal indexes of technical progress, γ(y, w), as follows:

$$ \begin{aligned} \gamma \left( {{\text{y}},{\text{w}}} \right) & \equiv {{{\text{C}}^{ 1} ({\text{y}},{\text{w}})} \mathord{\left/ {\vphantom {{{\text{C}}^{ 1} ({\text{y}},{\text{w}})} {{\text{C}}^{0} ({\text{y}},{\text{w}})}}} \right. \kern-\nulldelimiterspace} {{\text{C}}^{0} ({\text{y}},{\text{w}})}} \\ & = {{\left[ {{\text{c}}_{ 1}^{ 1} \left( {{\text{w}}_{ 1} } \right){\text{y}}_{ 1} + {\text{ c}}_{ 2}^{ 1} \left( {{\text{w}}_{ 2} } \right){\text{y}}_{ 2} } \right]} \mathord{\left/ {\vphantom {{\left[ {{\text{c}}_{ 1}^{ 1} \left( {{\text{w}}_{ 1} } \right){\text{y}}_{ 1} + {\text{ c}}_{ 2}^{ 1} \left( {{\text{w}}_{ 2} } \right){\text{y}}_{ 2} } \right]} {\left[ {{\text{c}}_{ 1}^{0} \left( {{\text{w}}_{ 1} } \right){\text{y}}_{ 1} + {\text{ c}}_{ 2}^{0} \left( {{\text{w}}_{ 2} } \right){\text{y}}_{ 2} } \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {{\text{c}}_{ 1}^{0} \left( {{\text{w}}_{ 1} } \right){\text{y}}_{ 1} + {\text{ c}}_{ 2}^{0} \left( {{\text{w}}_{ 2} } \right){\text{y}}_{ 2} } \right]}}\quad {\text{using}}\, ( 3 3 ). \\ \end{aligned} $$
(48)

The theoretical reciprocal technical progress index γ(y, w) defined by (48) is equal to the (hypothetical) total cost C1(y, w) of producing the reference vector of outputs, y ≡ [y1, y2], when the service providers face the reference vector of input prices w using the period 1 technology, divided by the total cost C0(y, w) of producing the same reference vector of outputs, y, and facing the same reference vector of input prices w, where we now use the period 0 technology.Footnote 26 Thus γ(y, w) is a measure of the proportional reduction in costs that occurs due to technical progress between periods 0 and 1 and it can be seen that this is an inverse measure of technical progress. For each choice of a reference vector of output quantities y and reference vector of input prices w, we obtain a (different) measure of exogenous cost reduction.

Instead of singling out the reference vectors y and w that appear in the definition of γ(y, w) to be the period t quantity and price vectors (yt, wt) for t = 0, 1, we will choose the mixed vectors (y0, w1) and (y1, w0) for special attention. The reason for these rather odd looking choices will be explained below.

We want to explain the growth in total costs going from period 0 to 1, C1(y1, w1)/C0(y0, w0), as the product of three growth factors:

  • Growth in outputs; i.e., a factor of the form α(y0, y1, w, t) defined above by (35);

  • Growth in input prices; i.e., a factor of the form β(w0, w1, y, t) defined by (39) and

  • Exogenous reduction in costs due to technical progress; i.e., a factor of the form γ(y, w) defined by (48).

Simple algebra shows that we have the following decompositions of the cost ratio C1(y1, w1)/C0(y0, w0) into explanatory factors of the above type:Footnote 27

$$ \begin{aligned} {{{\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right)} \mathord{\left/ {\vphantom {{{\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right)} {{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right)}}} \right. \kern-\nulldelimiterspace} {{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right)}} \\ & = \left[ {{{{\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right)} \mathord{\left/ {\vphantom {{{\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right)} {{\text{C}}^{ 1} \left( {{\text{y}}^{0} ,{\text{w}}^{ 1} } \right)}}} \right. \kern-\nulldelimiterspace} {{\text{C}}^{ 1} \left( {{\text{y}}^{0} ,{\text{w}}^{ 1} } \right)}}} \right]\left[ {{{{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{ 1} } \right)} \mathord{\left/ {\vphantom {{{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{ 1} } \right)} {{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right)}}} \right. \kern-\nulldelimiterspace} {{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right)}}} \right]\left[ {{{{\text{C}}^{ 1} \left( {{\text{y}}^{0} ,{\text{w}}^{ 1} } \right)} \mathord{\left/ {\vphantom {{{\text{C}}^{ 1} \left( {{\text{y}}^{0} ,{\text{w}}^{ 1} } \right)} {{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{ 1} } \right)}}} \right. \kern-\nulldelimiterspace} {{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{ 1} } \right)}}} \right] \\ & = \alpha_{ 1} \beta_{0} \gamma \left( {{\text{y}}^{0} ,{\text{w}}^{ 1} } \right)\quad {\text{using}}\,{\text{definitions}}\, ( 3 7 ) ,\, ( 4 0 )\,{\text{and}}\, ( 4 8 ); \\ \end{aligned} $$
(49)
$$ \begin{aligned} {\text{C}}^{ 1} {{\left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right)} \mathord{\left/ {\vphantom {{\left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right)} {{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right)}}} \right. \kern-\nulldelimiterspace} {{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right)}} \\ & = \left[ {{{{\text{C}}^{0} \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right)} \mathord{\left/ {\vphantom {{{\text{C}}^{0} \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right)} {{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right)}}} \right. \kern-\nulldelimiterspace} {{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right)}}} \right]\left[ {{{{\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right)} \mathord{\left/ {\vphantom {{{\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right)} {{\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right)}}} \right. \kern-\nulldelimiterspace} {{\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right)}}} \right]\left[ {{{{\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right)} \mathord{\left/ {\vphantom {{{\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right)} {{\text{C}}^{0} \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right)}}} \right. \kern-\nulldelimiterspace} {{\text{C}}^{0} \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right)}}} \right] \\ & = \alpha_{0} \beta_{ 1} \gamma \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right)\quad {\text{using}}\,{\text{definitions}}\, ( 3 6 ),\,(41)\,{\text{and}}\, ( 4 8 ). \\ \end{aligned} $$
(50)

The above decompositions show that the two special cases of γ(y, w) defined by (48) of particular interest are defined by (51) and (52) below:

$$ \begin{aligned} \gamma \left( {{\text{y}}^{0} ,{\text{w}}^{ 1} } \right) & \equiv {{{\text{C}}^{ 1} \left( {{\text{y}}^{0} ,{\text{w}}^{ 1} } \right)} \mathord{\left/ {\vphantom {{{\text{C}}^{ 1} \left( {{\text{y}}^{0} ,{\text{w}}^{ 1} } \right)} {{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{ 1} } \right)}}} \right. \kern-\nulldelimiterspace} {{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{ 1} } \right)}}\quad {\text{using}}\,(48) \\ & = {{\left[ {{\text{c}}_{ 1}^{ 1} \left( {{\text{w}}_{ 1}^{ 1} } \right){\text{y}}_{ 1}^{0} + {\text{ c}}_{ 2}^{ 1} \left( {{\text{w}}_{ 2}^{ 1} } \right){\text{y}}_{ 2}^{0} } \right]} \mathord{\left/ {\vphantom {{\left[ {{\text{c}}_{ 1}^{ 1} \left( {{\text{w}}_{ 1}^{ 1} } \right){\text{y}}_{ 1}^{0} + {\text{ c}}_{ 2}^{ 1} \left( {{\text{w}}_{ 2}^{ 1} } \right){\text{y}}_{ 2}^{0} } \right]} {\left[ {{\text{c}}_{ 1}^{0} \left( {{\text{w}}_{ 1}^{ 1} } \right){\text{y}}_{ 1}^{0} + {\text{ c}}_{ 2}^{0} \left( {{\text{w}}_{ 2}^{ 1} } \right){\text{y}}_{ 2}^{0} } \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {{\text{c}}_{ 1}^{0} \left( {{\text{w}}_{ 1}^{ 1} } \right){\text{y}}_{ 1}^{0} + {\text{ c}}_{ 2}^{0} \left( {{\text{w}}_{ 2}^{ 1} } \right){\text{y}}_{ 2}^{0} } \right]}}\quad {\text{using}}\, ( 3 3 ); \\ \end{aligned} $$
(51)
$$ \begin{aligned} \gamma \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right) & \equiv {{{\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right)} \mathord{\left/ {\vphantom {{{\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right)} {{\text{C}}^{0} \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right)}}} \right. \kern-\nulldelimiterspace} {{\text{C}}^{0} \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right)}}\quad {\text{using}}\, ( 4 8 )\\ & = {{\left[ {{\text{c}}_{ 1}^{ 1} \left( {{\text{w}}_{ 1}^{0} } \right){\text{y}}_{ 1}^{ 1} + {\text{ c}}_{ 2}^{ 1} \left( {{\text{w}}_{ 2}^{0} } \right){\text{y}}_{ 2}^{ 1} } \right]} \mathord{\left/ {\vphantom {{\left[ {{\text{c}}_{ 1}^{ 1} \left( {{\text{w}}_{ 1}^{0} } \right){\text{y}}_{ 1}^{ 1} + {\text{ c}}_{ 2}^{ 1} \left( {{\text{w}}_{ 2}^{0} } \right){\text{y}}_{ 2}^{ 1} } \right]} {\left[ {{\text{c}}_{ 1}^{0} \left( {{\text{w}}_{ 1}^{0} } \right){\text{y}}_{ 1}^{ 1} + {\text{ c}}_{ 2}^{0} \left( {{\text{w}}_{ 2}^{0} } \right){\text{y}}_{ 2}^{ 1} } \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {{\text{c}}_{ 1}^{0} \left( {{\text{w}}_{ 1}^{0} } \right){\text{y}}_{ 1}^{ 1} + {\text{ c}}_{ 2}^{0} \left( {{\text{w}}_{ 2}^{0} } \right){\text{y}}_{ 2}^{ 1} } \right]}}\quad {\text{using}}\,(33). \\ \end{aligned} $$
(52)

We will now work out observable first order approximations (and observable bounds) to the two specific measures of reciprocal technical progress defined by (51) and (52). From the second equation in (51), we have:

$$ \begin{aligned} {\text{C}}^{ 1} \left( {{\text{y}}^{0} ,{\text{w}}^{ 1} } \right) & = {\text{c}}_{ 1}^{ 1} \left( {{\text{w}}_{ 1}^{ 1} } \right){\text{y}}_{ 1}^{0} + {\text{c}}_{ 2}^{ 1} \left( {{\text{w}}_{ 2}^{ 1} } \right){\text{y}}_{ 2}^{0} \\ & = {\text{p}}_{ 1}^{ 1} {\text{y}}_{ 1}^{0} + {\text{ p}}_{ 2}^{ 1} {\text{y}}_{ 2}^{0} \quad {\text{using}}\, ( 3 1 )\\ & = {\text{p}}^{ 1} \cdot {\text{y}}^{0} . \\ \end{aligned} $$
(53)

Since C0(y0, w) is concave in the components of the input price vector w, C0(y0, w) regarded as a function of w will be bounded from above by its first order Taylor series approximation around the point w0 so the following inequality will be satisfied:Footnote 28

$$ \begin{aligned} {\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{ 1} } \right) & \le {\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right) + \nabla_{\text{w}} {\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right) \cdot \left[ {{\text{w}}^{ 1} - {\text{ w}}^{0} } \right] \\ & = {\text{w}}^{ 1} \cdot \nabla_{\text{w}} {\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right)\quad {\text{since}}\,{\text{w}}^{0} \cdot \nabla_{\text{w}} {\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right) = {\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right) \\ & = {\text{w}}_{ 1}^{ 1} \cdot {\text{x}}_{ 1}^{0} + {\text{ w}}_{ 2}^{ 1} \cdot {\text{x}}_{ 2}^{0} \quad {\text{using}}\, ( 2 8 )\,{\text{and}}\, ( 3 3 )\\ & \equiv {\text{w}}^{ 1} \cdot {\text{x}}^{0} . \\ \end{aligned} $$
(54)

Thus the period 0 total cost function C0(y0, w1), evaluated at the vector of period 0 observed outputs y0 and the period 1 observed input prices w1, is bounded from above by the inner product of the period 1 input price vector w1 and the observed vector of inputs for period 0, x0.Footnote 29 Note also from the first line of (54) that w1 · x0 is a first order Taylor series approximation to the unobserved cost C0(y0, w1). The results (53) and (54) can now be used in order to form a bound (and a first order approximation) to the measure of reciprocal technical progress γ(y0, w1) defined by (51):

$$ \begin{aligned} \gamma \left( {{\text{y}}^{0} ,{\text{w}}^{ 1} } \right) & = {\text{C}}^{ 1} \left( {{\text{y}}^{0} ,{\text{w}}^{ 1} } \right)/{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{ 1} } \right) \\ & \ge {{{\text{p}}^{ 1} \cdot {\text{y}}^{0} } \mathord{\left/ {\vphantom {{{\text{p}}^{ 1} \cdot {\text{y}}^{0} } {{\text{w}}^{ 1} \cdot {\text{x}}^{0} }}} \right. \kern-\nulldelimiterspace} {{\text{w}}^{ 1} \cdot {\text{x}}^{0} }}\quad {\text{using}}\, ( 5 3 )\,{\text{and}}\, ( 5 4 )\\ & = {{\left[ {{\text{p}}^{ 1} \cdot {\text{y}}^{0} /{\text{p}}^{ 1} \cdot {\text{y}}^{ 1} } \right]} \mathord{\left/ {\vphantom {{\left[ {{\text{p}}^{ 1} \cdot {\text{y}}^{0} /{\text{p}}^{ 1} \cdot {\text{y}}^{ 1} } \right]} {\left[ {{\text{w}}^{ 1} \cdot {\text{x}}^{0} /{\text{w}}^{ 1} \cdot {\text{x}}^{ 1} } \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {{\text{w}}^{ 1} \cdot {\text{x}}^{0} /{\text{w}}^{ 1} \cdot {\text{x}}^{ 1} } \right]}}\quad {\text{using}}\, ( 3 2 )\;{\text{ for}}\,{\text{t}} = 1\\ & = {{\left[ {{\text{w}}^{ 1} \cdot {\text{x}}^{ 1} /{\text{w}}^{ 1} \cdot {\text{x}}^{0} } \right]} \mathord{\left/ {\vphantom {{\left[ {{\text{w}}^{ 1} \cdot {\text{x}}^{ 1} /{\text{w}}^{ 1} \cdot {\text{x}}^{0} } \right]} {\left[ {{\text{p}}^{ 1} \cdot {\text{y}}^{ 1} /{\text{p}}^{ 1} \cdot {\text{y}}^{0} } \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {{\text{p}}^{ 1} \cdot {\text{y}}^{ 1} /{\text{p}}^{ 1} \cdot {\text{y}}^{0} } \right]}}\quad {\text{rearranging}}\,{\text{terms}} \\ & = {{{\text{Q}}_{\text{P}}^{*} } \mathord{\left/ {\vphantom {{{\text{Q}}_{\text{P}}^{*} } {{\text{Q}}_{\text{P}} }}} \right. \kern-\nulldelimiterspace} {{\text{Q}}_{\text{P}} }}\quad {\text{using}}\, ( 7 )\,{\text{and}}\, ( 1 1 )\\ & = \left[ {{\text{Q}}_{\text{P}} /{\text{Q}}_{\text{P}}^{*} } \right]^{ - 1} \\ \end{aligned} $$
(55)

where QP is the Paasche output quantity index defined by (11) and \( {\text{Q}}_{\text{P}}^{*} \) is the Paasche input quantity index defined by (7) in the main text. Note that QP divided by \( {\text{Q}}_{\text{P}}^{*} \) is the Paasche productivity index. Thus (55) tells us that the theoretical measure of reciprocal technical progress defined by (51), γ(y0, w1), is bounded from below by the reciprocal of the observable Paasche productivity index, \( {\text{Q}}_{\text{P}} /{\text{Q}}_{\text{P}}^{*} \). Moreover, it can be seen that \( \left[ {{\text{Q}}_{\text{P}} /{\text{Q}}_{\text{P}}^{*} } \right]^{ - 1} \) is also a first order approximation to the theoretical index γ(y0, w1).

The above algebra can be repeated with minor modifications in order to derive a bound for the theoretical index γ(y1, w0) defined by (52). Thus we have:

$$ \begin{aligned} {\text{C}}^{0} \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right) & = {\text{c}}_{ 1}^{0} \left( {{\text{w}}_{ 1}^{0} } \right){\text{y}}_{ 1}^{ 1} + {\text{ c}}_{ 2}^{0} \left( {{\text{w}}_{ 2}^{0} } \right){\text{y}}_{ 2}^{ 1} \\ & = {\text{p}}_{ 1}^{0} {\text{y}}_{ 1}^{ 1} + {\text{p}}_{ 2}^{0} {\text{y}}_{ 2}^{ 1} \quad {\text{using}}\, ( 3 1 )\\ & = {\text{p}}^{0} \cdot {\text{y}}^{ 1} . \\ \end{aligned} $$
(56)

Since C1(y1, w) is concave in the components of the input price vector w, C1(y1, w) regarded as a function of w will be bounded from above by its first order Taylor series approximation around the point w1 so the following inequality will be satisfied:

$$ \begin{aligned} {\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right) & \le {\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right) + \nabla_{\text{w}} {\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right) \cdot \left[ {{\text{w}}^{0} - {\text{ w}}^{ 1} } \right] \\ & = {\text{w}}^{0} \cdot \nabla_{\text{w}} {\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right)\quad {\text{ since}}\,{\text{w}}^{ 1} \cdot \nabla_{\text{w}} {\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right) = {\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right) \\ & = {\text{w}}_{ 1}^{0} \cdot {\text{x}}_{ 1}^{ 1} + {\text{ w}}_{ 2}^{0} \cdot {\text{x}}_{ 2}^{ 1} \quad {\text{using}}\, ( 2 8 )\,{\text{and}}\, ( 3 3 )\\ & \equiv {\text{w}}^{0} \cdot {\text{x}}^{ 1} . \\ \end{aligned} $$
(57)

Thus the period 1 total cost function C1(y1, w0), evaluated at the vector of period 1 observed outputs y1 and the period 0 observed input prices w0, is bounded from above by the inner product of the period 0 input price vector w0 and the observed vector of inputs for period 1, x1.Footnote 30 Note also from the first line of (57) that w0 · x1 is a first order Taylor series approximation to the unobserved cost C1(y1, w0). The results (56) and (57) can now be used in order to form a bound (and a first order approximation) to the measure of reciprocal technical progress γ(y1, w0) defined by (52):

$$ \begin{aligned} \gamma \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right) & = {{{\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right)} \mathord{\left/ {\vphantom {{{\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right)} {{\text{C}}^{0} \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right)}}} \right. \kern-\nulldelimiterspace} {{\text{C}}^{0} \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right)}} \\ & \le {{{\text{w}}^{0} \cdot {\text{x}}^{ 1} } \mathord{\left/ {\vphantom {{{\text{w}}^{0} \cdot {\text{x}}^{ 1} } {{\text{p}}^{0} \cdot {\text{y}}^{ 1} \quad }}} \right. \kern-\nulldelimiterspace} {{\text{p}}^{0} \cdot {\text{y}}^{ 1} \quad }}{\text{using}}\, ( 5 6 )\,{\text{and}}\, ( 5 7 )\\ & = {{\left[ {{\text{w}}^{0} \cdot {\text{x}}^{ 1} /{\text{w}}^{0} \cdot {\text{x}}^{0} } \right]} \mathord{\left/ {\vphantom {{\left[ {{\text{w}}^{0} \cdot {\text{x}}^{ 1} /{\text{w}}^{0} \cdot {\text{x}}^{0} } \right]} {\left[ {{\text{p}}^{0} \cdot {\text{y}}^{ 1} /{\text{p}}^{0} \cdot {\text{y}}^{0} } \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {{\text{p}}^{0} \cdot {\text{y}}^{ 1} /{\text{p}}^{0} \cdot {\text{y}}^{0} } \right]}}\quad {\text{using}}\, ( 3 2 )\;{\text{for}}\,{\text{t}} = 0 \\ & = {{{\text{Q}}_{\text{L}}^{*} } \mathord{\left/ {\vphantom {{{\text{Q}}_{\text{L}}^{*} } {{\text{Q}}_{\text{L}} }}} \right. \kern-\nulldelimiterspace} {{\text{Q}}_{\text{L}} }}\quad {\text{using}}\, ( 6 )\,{\text{and}}\, ( 1 0 )\\ & = \left[ {{{{\text{Q}}_{\text{L}} } \mathord{\left/ {\vphantom {{{\text{Q}}_{\text{L}} } {{\text{Q}}_{\text{L}}^{*} }}} \right. \kern-\nulldelimiterspace} {{\text{Q}}_{\text{L}}^{*} }}} \right]^{ - 1} \\ \end{aligned} $$
(58)

where QL is the Laspeyres output quantity index defined by (10) and \( {\text{Q}}_{\text{L}}^{*} \) is the Laspeyres input quantity index defined by (6) in the main text. Note that QL divided by \( {\text{Q}}_{\text{L}}^{*} \) is the Laspeyres productivity index. Thus (58) tells us that the theoretical measure of reciprocal technical progress defined by (52), γ(y1, w0), is bounded from above by the reciprocal of the observable Laspeyres productivity index, \( {\text{Q}}_{\text{L}} /{\text{Q}}_{\text{L}}^{*} \). Moreover, it can be seen that \( \left[ {{\text{Q}}_{\text{L}} /{\text{Q}}_{\text{L}}^{*} } \right]^{ - 1} \) is also a first order approximation to the theoretical index γ(y1, w0).

Since the two cost decompositions for the rate of growth of cost, C1(y1, w1)/C0(y0, w0), given by (49) and (50) are equally valid, we will take the geometric average of these two decompositions to obtain our preferred overall cost decomposition. This leads to the following theoretical decomposition of C1(y1, w1)/C0(y0, w0) into explanatory factors:

$$ {{{\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right)} \mathord{\left/ {\vphantom {{{\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right)} {{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right)}}} \right. \kern-\nulldelimiterspace} {{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right)}} = \alpha_{\text{F}} \beta_{\text{F}} \gamma_{\text{F}} $$
(59)

where the Fisher type output quantity growth factor αF is defined by (38), the Fisher type input price growth factor βF is defined by (47) and the Fisher type reciprocal measure of technical progress γF is defined as follows:

$$ \gamma_{\text{F}} \equiv \left[ {\gamma \left( {{\text{y}}^{0} ,{\text{w}}^{ 1} } \right)\gamma \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right)} \right]^{ 1/ 2} . $$
(60)

Using our first order approximations given by (55) and (58), it can be seen that an observable first order approximation to γF is the reciprocal of the Fisher productivity index \( {\text{Q}}_{\text{F}} /{\text{Q}}_{\text{F}}^{*} \); i.e., we have:

$$ \begin{aligned} \gamma_{\text{F}} & \approx \left\{ {\left[ {{{{\text{Q}}_{\text{P}}^{*} } \mathord{\left/ {\vphantom {{{\text{Q}}_{\text{P}}^{*} } {{\text{Q}}_{\text{P}} }}} \right. \kern-\nulldelimiterspace} {{\text{Q}}_{\text{P}} }}} \right]\left[ {{{{\text{Q}}_{\text{L}}^{*} } \mathord{\left/ {\vphantom {{{\text{Q}}_{\text{L}}^{*} } {{\text{Q}}_{\text{L}} }}} \right. \kern-\nulldelimiterspace} {{\text{Q}}_{\text{L}} }}} \right]} \right\}^{ 1/ 2} \quad {\text{using}}\, ( 5 5 )\,{\text{and}}\, ( 5 8 )\\ & = \left[ {{{{\text{Q}}_{\text{F}}^{*} } \mathord{\left/ {\vphantom {{{\text{Q}}_{\text{F}}^{*} } {{\text{Q}}_{\text{F}} }}} \right. \kern-\nulldelimiterspace} {{\text{Q}}_{\text{F}} }}} \right]\quad {\text{using}}\, ( 8 )\,{\text{and}}\, ( 1 2 )\\ & = \left[ {{{{\text{Q}}_{\text{F}} } \mathord{\left/ {\vphantom {{{\text{Q}}_{\text{F}} } {{\text{Q}}_{\text{F}}^{*} }}} \right. \kern-\nulldelimiterspace} {{\text{Q}}_{\text{F}}^{*} }}} \right]^{ - 1} . \\ \end{aligned} $$
(61)

However, since the substitution biases in the first order approximations given by (55) and (58) go in opposite directions, the approximation to the theoretical index γF given by the right hand side of (61) will generally be much closer than a first order approximation.

We now combine the theoretical cost decomposition defined by (59) with the exact result (38) and the approximate results (47) and (61):

$$ \begin{aligned} {{{\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right)} \mathord{\left/ {\vphantom {{{\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right)} {{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right)}}} \right. \kern-\nulldelimiterspace} {{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right)}} & = \alpha_{\text{F}} \beta_{\text{F}} \gamma_{\text{F}} \quad {\text{using}}\, ( 5 9 )\\ & \approx {\text{Q}}_{\text{F}} {\text{P}}_{\text{F}}^{*} \left[ {{{{\text{Q}}_{\text{F}} } \mathord{\left/ {\vphantom {{{\text{Q}}_{\text{F}} } {{\text{Q}}_{\text{F}}^{*} }}} \right. \kern-\nulldelimiterspace} {{\text{Q}}_{\text{F}}^{*} }}} \right]^{ - 1} \quad {\text{using}}\, ( 3 8 ),\,(47)\,{\text{and}}\, ( 6 1 ). \\ \end{aligned} $$
(62)

Thus (one plus) the rate of growth of industry cost, C1(y1, w1)/C0(y0, w0), is approximately equal to (one plus) the rate of output growth defined by the Fisher output quantity index, QF, times (one plus) the rate of growth of input prices defined by the Fisher input price index, \( {\text{P}}_{\text{F}}^{*} \), times the reciprocal of (one plus) the Fisher rate of productivity growth, \( {\text{Q}}_{\text{F}} /{\text{Q}}_{\text{F}}^{*} \). However, it turns out that the left hand side of (62) is identically equal to the product of the explanatory factors on the right hand side of (62), since it can be shown that the following identity holds:Footnote 31

$$ {{\left[ {{{{\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right)} \mathord{\left/ {\vphantom {{{\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right)} {{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right)}}} \right. \kern-\nulldelimiterspace} {{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right)}}} \right]} \mathord{\left/ {\vphantom {{\left[ {{{{\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right)} \mathord{\left/ {\vphantom {{{\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right)} {{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right)}}} \right. \kern-\nulldelimiterspace} {{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right)}}} \right]} {{\text{P}}_{\text{F}}^{*} }}} \right. \kern-\nulldelimiterspace} {{\text{P}}_{\text{F}}^{*} }} = {\text{Q}}_{\text{F}}^{*} ; $$
(63)

i.e., the Fisher implicit input quantity index, \( [{\text{w}}^{ 1} \cdot {\text{x}}^{ 1} /{\text{w}}^{0} \cdot {\text{x}}^{0} ]/{\text{P}}_{\text{F}}^{*} \), is equal to the direct Fisher input quantity index, \( {\text{Q}}_{\text{F}}^{*} \).

Note that the above results are entirely nonparametric. Thus we have generalized (to a reasonable degree of approximation) the results derived in the main text under the assumption that the procedure production functions were of the no substitution variety to the case where the procedure production functions are general ones.

It is possible to further generalize our results from the case where the procedure functions are independent to the case where there are shared overheads between the procedures.Footnote 32 In this more general framework, the health sector’s period t total cost function Ct(y, w) is no longer defined as the sum of the two procedure cost functions, C t1 (y1, w1) plus C t2 (y2, w2) as in (33), but is simply a general nonjoint cost function. The regularity conditions that we impose on each Ct(y, w) is that it is a nonnegative, jointly continuous differentiable function in its variables (y, x) and that it is linearly homogeneous,Footnote 33 nondecreasing and convexFootnote 34 in the components of y for fixed w and linearly homogeneous, nondecreasing and concave in the components of w for each fixed y. As usual, we assume cost minimizing behavior in periods t = 0, 1 and that we can observe the period t industry output vector, yt ≡ [y t1 , y t2 ], the period t aggregate input vector xt ≡ [x t1 , x t2 ] and the corresponding vector of input prices wt ≡ [w t1 , w t2 ] for t = 0, 1. As usual, Shephard’s Lemma tells us that the period t vector of inputs is equal to the vector of first order partial derivatives of the period t cost function with respect to the components of the input price vector; i.e., we have:

$$ {\text{x}}^{\text{t}} = \nabla_{\text{w}} {\text{C}}^{\text{t}} \left( {{\text{y}}^{\text{t}} ,{\text{w}}^{\text{t}} } \right);\quad {\text{t}} = 0, 1. $$
(64)

The period t vector of marginal cost output prices pt ≡ [p t1 , p t2 ] is defined as the vector of first order partial derivatives of the period t cost function with respect to the components of the output vector:

$$ {\text{p}}^{\text{t}} \equiv \nabla_{\text{y}} {\text{C}}^{\text{t}} \left( {{\text{y}}^{\text{t}} ,{\text{w}}^{\text{t}} } \right);\quad {\text{t}} = 0, 1. $$
(65)

It should be noted that the linear homogeneity properties of Ct(y, w) in y and w separately imply the following equalities:

$$ {\text{C}}^{\text{t}} \left( {{\text{y}}^{\text{t}} ,{\text{w}}^{\text{t}} } \right) = {\text{w}}^{\text{t}} \cdot {\text{x}}^{\text{t}} = {\text{p}}^{\text{t}} \cdot {\text{y}}^{\text{t}} ;\quad {\text{t}} = 0, 1. $$
(66)

We can now modify the above analysis in this “Appendix”, letting the marginal cost prices pt defined by (65) replace our old unit cost prices.

In particular, we use the first line in (35) in order to define a new family of cost based output quantity indexes as α(y0, y1, w, t) ≡ Ct(y1, w)/Ct(y0, w) and we again use the first line in (36) and (37), to define the two specific output quantity indexes α0 as α(y0, y1, w0, 0) and α1 as α(y0, y1, w1, 1). However, in our new more general model, we no longer obtain the equalities in (36) and (37); instead, we obtain the following first order approximations and bounds:Footnote 35

$$ \begin{aligned} \alpha_{0} & \equiv {{{\text{C}}^{0} \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right)} \mathord{\left/ {\vphantom {{{\text{C}}^{0} \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right)} {{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right)}}} \right. \kern-\nulldelimiterspace} {{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right)}} \\ & = {{{\text{C}}^{0} \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right)} \mathord{\left/ {\vphantom {{{\text{C}}^{0} \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right)} {{\text{p}}^{0} \cdot {\text{y}}^{0} }}} \right. \kern-\nulldelimiterspace} {{\text{p}}^{0} \cdot {\text{y}}^{0} }}\quad {\text{using}}\, ( 6 6 )\\ & \ge {{\left\{ {{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right) + \nabla_{\text{y}} {\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right) \cdot \left[ {{\text{y}}^{ 1} - {\text{ y}}^{0} } \right]} \right\}} \mathord{\left/ {\vphantom {{\left\{ {{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right) + \nabla_{\text{y}} {\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right) \cdot \left[ {{\text{y}}^{ 1} - {\text{ y}}^{0} } \right]} \right\}} {{\text{p}}^{0} \cdot {\text{y}}^{0} }}} \right. \kern-\nulldelimiterspace} {{\text{p}}^{0} \cdot {\text{y}}^{0} }}\quad {\text{using}}\,{\text{the}}\,{\text{convexity}}\,{\text{of}}\,{\text{C}}^{0} \left( {{\text{y}},{\text{w}}^{0} } \right)\,{\text{in}}\,{\text{y}} \\ & = {{\nabla_{\text{y}} {\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right) \cdot {\text{y}}^{ 1} } \mathord{\left/ {\vphantom {{\nabla_{\text{y}} {\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right) \cdot {\text{y}}^{ 1} } {{\text{p}}^{0} \cdot {\text{y}}^{0} }}} \right. \kern-\nulldelimiterspace} {{\text{p}}^{0} \cdot {\text{y}}^{0} }}\quad {\text{using}}\,\nabla_{\text{y}} {\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right) \cdot {\text{y}}^{0} = {\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right) \\ & = {{{\text{p}}^{0} \cdot {\text{y}}^{ 1} } \mathord{\left/ {\vphantom {{{\text{p}}^{0} \cdot {\text{y}}^{ 1} } {{\text{p}}^{0} \cdot {\text{y}}^{0} }}} \right. \kern-\nulldelimiterspace} {{\text{p}}^{0} \cdot {\text{y}}^{0} }}\quad {\text{using}}\, ( 6 5 )\;{\text{for}}\,{\text{t}} = 0 \\ & = {\text{Q}}_{\text{L}} \quad {\text{using}}\, ( 1 0 ); \\ \end{aligned} $$
(67)
$$ \begin{aligned} \alpha_{ 1} & \equiv {{{\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right)} \mathord{\left/ {\vphantom {{{\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right)} {{\text{C}}^{ 1} \left( {{\text{y}}^{0} ,{\text{w}}^{ 1} } \right)}}} \right. \kern-\nulldelimiterspace} {{\text{C}}^{ 1} \left( {{\text{y}}^{0} ,{\text{w}}^{ 1} } \right)}} \\ & = {{{\text{p}}^{ 1} \cdot {\text{y}}^{ 1} } \mathord{\left/ {\vphantom {{{\text{p}}^{ 1} \cdot {\text{y}}^{ 1} } {{\text{C}}^{ 1} \left( {{\text{y}}^{0} ,{\text{w}}^{ 1} } \right)}}} \right. \kern-\nulldelimiterspace} {{\text{C}}^{ 1} \left( {{\text{y}}^{0} ,{\text{w}}^{ 1} } \right)}}\quad {\text{using}}\, ( 6 6 )\\ & \le {{{\text{p}}^{ 1} \cdot {\text{y}}^{ 1} } \mathord{\left/ {\vphantom {{{\text{p}}^{ 1} \cdot {\text{y}}^{ 1} } {\left\{ {{\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right) + \nabla_{\text{y}} {\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right) \cdot \left[ {{\text{y}}^{0} - {\text{y}}^{ 1} } \right]} \right\}}}} \right. \kern-\nulldelimiterspace} {\left\{ {{\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right) + \nabla_{\text{y}} {\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right) \cdot \left[ {{\text{y}}^{0} - {\text{y}}^{ 1} } \right]} \right\}}}\quad {\text{using}}\,{\text{the}}\,{\text{convexity}}\,{\text{of}}\,{\text{C}}^{ 1} \,\left( {{\text{y}},{\text{w}}^{ 1} } \right)\,{\text{in}}\,{\text{y}} \\ & = {{{\text{p}}^{ 1} \cdot {\text{y}}^{ 1} } \mathord{\left/ {\vphantom {{{\text{p}}^{ 1} \cdot {\text{y}}^{ 1} } {\left\{ {\nabla_{\text{y}} {\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right) \cdot {\text{y}}^{0} } \right\}}}} \right. \kern-\nulldelimiterspace} {\left\{ {\nabla_{\text{y}} {\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right) \cdot {\text{y}}^{0} } \right\}}}\quad {\text{using}}\,\nabla_{\text{y}} {\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right) \cdot {\text{y}}^{ 1} = {\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right) \\ & = {{{\text{p}}^{ 1} \cdot {\text{y}}^{ 1} } \mathord{\left/ {\vphantom {{{\text{p}}^{ 1} \cdot {\text{y}}^{ 1} } {{\text{p}}^{ 1} \cdot {\text{y}}^{0} }}} \right. \kern-\nulldelimiterspace} {{\text{p}}^{ 1} \cdot {\text{y}}^{0} }}\quad {\text{using}}\,(65)\quad {\text{for}}\,{\text{t}} = 1\\ & = {\text{Q}}_{\text{P}} \quad {\text{using}}\,{\text{definition}}\, ( 1 1 ). \\ \end{aligned} $$
(68)

Thus the ordinary Laspeyres output quantity index QL (using marginal cost prices) is no longer equal to the theoretical output index α0 defined by the first line in (67) but is only a first order approximation and a lower bound. Similarly, ordinary Paasche output quantity index QP (using marginal cost prices) is no longer equal to the theoretical output index α1 defined by the first line in (68) but is only a first order approximation and an upper bound to this theoretical output quantity index. However, as before, the Fisher theoretical output quantity index αF defined as the geometric mean of α0 and α1 will be approximated by the Fisher output quantity index, QF ≡ [QLQP]1/2, and due to the offsetting substitution biases in (67) and (68), QF will generally approximate αF to an accuracy that is greater than a first order approximation.

The analysis associated with (39)–(47) goes through with obvious modifications using our more general model and so we will not repeat this analysis.

We can again define the family of reciprocal indexes of technical progress using the first line in (48) as γ(y, w) ≡ C1(y, w)/C0(y, w). As before, the factorizations of cost growth given by (49) and (50) continue to be valid in this more general framework and so we need empirically observable approximations to the two indexes of technical progress defined by (51) and (52). The inequalities in (54) and (57) continue to be valid but the equalities in (53) and (56) are no longer valid in our more general model and need to be replaced by the following inequalities which were derived in (68) and (67):

$$ \begin{aligned} {\text{C}}^{ 1} \left( {{\text{y}}^{0} ,{\text{w}}^{ 1} } \right) & \ge {\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right) + \nabla_{\text{y}} {\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right) \cdot \left[ {{\text{y}}^{0} - {\text{ y}}^{ 1} } \right] \\ & = {\text{p}}^{ 1} \cdot {\text{y}}^{0} ; \\ \end{aligned} $$
(69)
$$ \begin{aligned} {\text{C}}^{0} \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right) & \ge {\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right) + \nabla_{\text{y}} {\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right) \cdot \left[ {{\text{y}}^{ 1} - {\text{ y}}^{0} } \right] \\ & = {\text{p}}^{0} \cdot {\text{y}}^{ 1} . \\ \end{aligned} $$
(70)

Using definition (51) and the inequalities (54) and (69) establishes the following inequality:

$$ \begin{aligned} \gamma \left( {{\text{y}}^{0} ,{\text{w}}^{ 1} } \right) & = {{{\text{C}}^{ 1} \left( {{\text{y}}^{0} ,{\text{w}}^{ 1} } \right)} \mathord{\left/ {\vphantom {{{\text{C}}^{ 1} \left( {{\text{y}}^{0} ,{\text{w}}^{ 1} } \right)} {{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{ 1} } \right)}}} \right. \kern-\nulldelimiterspace} {{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{ 1} } \right)}}\quad {\text{using}}\,{\text{definition}}\, ( 5 1 )\\ & \ge {{{\text{p}}^{ 1} \cdot {\text{y}}^{0} } \mathord{\left/ {\vphantom {{{\text{p}}^{ 1} \cdot {\text{y}}^{0} } {{\text{w}}^{ 1} \cdot {\text{x}}^{0} }}} \right. \kern-\nulldelimiterspace} {{\text{w}}^{ 1} \cdot {\text{x}}^{0} }}\quad {\text{using}}\, ( 6 9 )\,{\text{and}}\, ( 5 4 )\\ & = {{\left[ {{\text{p}}^{ 1} \cdot {\text{y}}^{0} /{\text{p}}^{ 1} \cdot {\text{y}}^{ 1} } \right]} \mathord{\left/ {\vphantom {{\left[ {{\text{p}}^{ 1} \cdot {\text{y}}^{0} /{\text{p}}^{ 1} \cdot {\text{y}}^{ 1} } \right]} {\left[ {{\text{w}}^{ 1} \cdot {\text{x}}^{0} /{\text{w}}^{ 1} \cdot {\text{x}}^{ 1} } \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {{\text{w}}^{ 1} \cdot {\text{x}}^{0} /{\text{w}}^{ 1} \cdot {\text{x}}^{ 1} } \right]}}\quad {\text{using}}\, ( 6 6 )\;{\text{for}}\,{\text{t}} = 1\\ & = {{{\text{Q}}_{\text{P}}^{*} } \mathord{\left/ {\vphantom {{{\text{Q}}_{\text{P}}^{*} } {{\text{Q}}_{\text{P}} }}} \right. \kern-\nulldelimiterspace} {{\text{Q}}_{\text{P}} }}\quad {\text{using}}\,(7)\,{\text{and}}\, ( 1 1 )\\ & = \left[ {{{{\text{Q}}_{\text{P}} } \mathord{\left/ {\vphantom {{{\text{Q}}_{\text{P}} } {{\text{Q}}_{\text{P}}^{*} }}} \right. \kern-\nulldelimiterspace} {{\text{Q}}_{\text{P}}^{*} }}} \right]^{ - 1} . \\ \end{aligned} $$
(71)

Similarly, using definition (52) and the inequalities (54) and (69) establishes the following inequality:

$$ \begin{aligned} \gamma \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right) & \equiv {{{\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right)} \mathord{\left/ {\vphantom {{{\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right)} {{\text{C}}^{0} \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right)}}} \right. \kern-\nulldelimiterspace} {{\text{C}}^{0} \left( {{\text{y}}^{ 1} ,{\text{w}}^{0} } \right)}}\quad {\text{using}}\,{\text{definition}}\, ( 5 2 )\\ & \le {{{\text{w}}^{0} \cdot {\text{x}}^{ 1} } \mathord{\left/ {\vphantom {{{\text{w}}^{0} \cdot {\text{x}}^{ 1} } {{\text{p}}^{0} \cdot {\text{y}}^{ 1} }}} \right. \kern-\nulldelimiterspace} {{\text{p}}^{0} \cdot {\text{y}}^{ 1} }}\quad {\text{using}}\, ( 5 7 )\,{\text{and}}\, ( 7 0 )\\ & = {{\left[ {{{{\text{w}}^{0} \cdot {\text{x}}^{ 1} } \mathord{\left/ {\vphantom {{{\text{w}}^{0} \cdot {\text{x}}^{ 1} } {{\text{w}}^{0} \cdot {\text{x}}^{0} }}} \right. \kern-\nulldelimiterspace} {{\text{w}}^{0} \cdot {\text{x}}^{0} }}} \right]} \mathord{\left/ {\vphantom {{\left[ {{{{\text{w}}^{0} \cdot {\text{x}}^{ 1} } \mathord{\left/ {\vphantom {{{\text{w}}^{0} \cdot {\text{x}}^{ 1} } {{\text{w}}^{0} \cdot {\text{x}}^{0} }}} \right. \kern-\nulldelimiterspace} {{\text{w}}^{0} \cdot {\text{x}}^{0} }}} \right]} {\left[ {{{{\text{p}}^{0} \cdot {\text{y}}^{ 1} } \mathord{\left/ {\vphantom {{{\text{p}}^{0} \cdot {\text{y}}^{ 1} } {{\text{p}}^{0} \cdot {\text{y}}^{0} }}} \right. \kern-\nulldelimiterspace} {{\text{p}}^{0} \cdot {\text{y}}^{0} }}} \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {{{{\text{p}}^{0} \cdot {\text{y}}^{ 1} } \mathord{\left/ {\vphantom {{{\text{p}}^{0} \cdot {\text{y}}^{ 1} } {{\text{p}}^{0} \cdot {\text{y}}^{0} }}} \right. \kern-\nulldelimiterspace} {{\text{p}}^{0} \cdot {\text{y}}^{0} }}} \right]}}\quad {\text{using}}\, ( 6 6 )\;{\text{for}}\,{\text{t}} = 0 \\ & = {{{\text{Q}}_{\text{L}}^{*} } \mathord{\left/ {\vphantom {{{\text{Q}}_{\text{L}}^{*} } {{\text{Q}}_{\text{L}} }}} \right. \kern-\nulldelimiterspace} {{\text{Q}}_{\text{L}} }}\quad {\text{using}}\, ( 6 )\,{\text{and}}\, ( 1 0 )\\ & = \left[ {{{{\text{Q}}_{\text{L}} } \mathord{\left/ {\vphantom {{{\text{Q}}_{\text{L}} } {{\text{Q}}_{\text{L}}^{*} }}} \right. \kern-\nulldelimiterspace} {{\text{Q}}_{\text{L}}^{*} }}} \right]^{ - 1} . \\ \end{aligned} $$
(72)

As before, define the Fisher type reciprocal measure of technical progress γF by (60). The rest of the above analysis goes through with minor modifications. In particular, we still obtain the cost decomposition (62) as the following exact equality:Footnote 36

$$ \begin{aligned} {{{\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right)} \mathord{\left/ {\vphantom {{{\text{C}}^{ 1} \left( {{\text{y}}^{ 1} ,{\text{w}}^{ 1} } \right)} {{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right)}}} \right. \kern-\nulldelimiterspace} {{\text{C}}^{0} \left( {{\text{y}}^{0} ,{\text{w}}^{0} } \right)}} & = \alpha_{\text{F}} \beta_{\text{F}} \gamma_{\text{F}} \\ & = {\text{Q}}_{\text{F}} {\text{P}}_{\text{F}}^{*} \left[ {{\text{Q}}_{\text{F}} {{} \mathord{\left/ {\vphantom {{} {{\text{Q}}_{\text{F}}^{*} }}} \right. \kern-\nulldelimiterspace} {{\text{Q}}_{\text{F}}^{*} }}} \right]^{ - 1} . \\ \end{aligned} $$
(73)

Note that it is risky to use either the Laspeyres or Paasche measures of productivity growth to approximate the corresponding theoretically correct measure of productivity growth since there are two doses of substitution bias between the left hand and right hand sides of (71) and (72); i.e., the output and input substitution biases augment each other when we use Paasche or Laspeyres productivity indexes instead of offsetting each other. Thus whenever possible, we recommend the use of Fisher productivity indexesFootnote 37 rather than the use of their Paasche or Laspeyres counterparts.

The reader may well wonder why we did not proceed directly to our final most general model of production instead of doing the additive cost model defined by (33) where no joint costs were present. The problem is that our most general model requires estimates of marginal cost prices in order to implement the practical approximations to the theoretical indexes. Unfortunately, econometric estimation of joint cost functions will generally be required in order to estimate these marginal cost prices and econometric estimation of joint cost functions with general technical progress and the use of flexible functional forms is a generally hazardous exercise!

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diewert, W.E. The measurement of productivity in the nonmarket sector. J Prod Anal 37, 217–229 (2012). https://doi.org/10.1007/s11123-011-0247-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11123-011-0247-x

Keywords

JEL Classification

Navigation