Skip to main content
Log in

Unveiling large charge transfer character of PSII in an iron-deficient cyanobacterial membrane: A Stark fluorescence spectroscopy study

  • Research
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In this work, we applied Stark fluorescence spectroscopy to an iron-stressed cyanobacterial membrane to reveal key insights about the electronic structures and excited state dynamics of the two important pigment-protein complexes, IsiA and PSII, both of which prevail simultaneously within the membrane during iron deficiency and whose fluorescence spectra are highly overlapped and hence often hardly resolved by conventional fluorescence spectroscopy. Thanks to the ability of Stark fluorescence spectroscopy, the fluorescence signatures of the two complexes could be plausibly recognized and disentangled. The systematic analysis of the SF spectra, carried out by employing standard Liptay formalism with a realistic spectral deconvolution protocol, revealed that the IsiA in an intact membrane retains almost identical excited state electronic structures and dynamics as compared to the isolated IsiA we reported in our earlier study. Moreover, the analysis uncovered that the excited state of the PSII subunit of the intact membrane possesses a significantly large CT character. The observed notably large magnitude of the excited state CT character may signify the supplementary role of PSII in regulative energy dissipation during iron deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akita F et al (2020) Structure of a cyanobacterial photosystem I surrounded by octadecameric IsiA antenna proteins. Commun Biology 3(1):232

    Article  CAS  Google Scholar 

  • Albertsson P-Å (2001) A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci 6(8):349–354

    Article  CAS  PubMed  Google Scholar 

  • Ara AM et al (2006) External electric field effects on fluorescence of pyrene butyric acid in a polymer film: concentration dependence and temperature dependence. J Phys Chem B 110(47):23669–23677

    Article  CAS  PubMed  Google Scholar 

  • Ara AM et al (2020) Stark fluorescence spectroscopy on peridinin–chlorophyll–protein complex of dinoflagellate, Amphidinium carterae. Photosynth Res 143:233–239

    Article  CAS  PubMed  Google Scholar 

  • Ara AM et al (2021) Absence of far-red emission band in aggregated core antenna complexes. Biophys J 120(9):1680–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berera R et al (2009) A mechanism of energy dissipation in cyanobacteria. Biophys J 96(6):2261–2267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bibby TS, Nield J, Barber J (2001) Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature 412(6848):743–745

    Article  CAS  PubMed  Google Scholar 

  • Boehm M et al (2011) Investigating the early stages of photosystem II assembly in Synechocystis sp. PCC 6803: isolation of CP47 and CP43 complexes. J Biol Chem 286(17):14812–14819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boekema E et al (1987) Evidence for a trimeric organization of the photosystem I complex from the thermophilic cyanobacterium Synechococcus Sp. FEBS Lett 217(2):283–286

    Article  CAS  Google Scholar 

  • Boekema E et al (2001) A giant chlorophyll–protein complex induced by iron deficiency in cyanobacteria. Nature 412(6848):745–748

    Article  CAS  PubMed  Google Scholar 

  • Braver Y, Valkunas L, Gelzinis A (2021) Stark absorption and Stark fluorescence spectroscopies: Theory and simulations The Journal of Chemical Physics, 155(24)

  • Campbell D et al (1998) Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol Mol Biol Rev 62(3):667–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser JM et al (2013) Photophysiological and photosynthetic complex changes during iron starvation in Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942. PLoS ONE 8(3):e59861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gobets B, Van Grondelle R (2001) Energy transfer and trapping in photosystem I, Biochimica et Biophysica Acta BBA-Bioenergetics. 1507(1–3):80–99.

  • Gottfried DS, Stocker JW, Boxer SG (1991) Stark effect spectroscopy of bacteriochlorophyll in light-harvesting complexes from photosynthetic bacteria. Biochim et Biophys Acta (BBA)-Bioenergetics 1059(1):63–75

    Article  CAS  Google Scholar 

  • Grossman AR et al (1994) The responses of cyanobacteria to environmental conditions: light and nutrients, in the molecular biology of cyanobacteria. Springer, pp 641–675

  • Guikema JA, Sherman LA (1983) Organization and function of chlorophyll in membranes of cyanobacteria during iron starvation. Plant Physiol 73(2):250–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havaux M et al (2005) The chlorophyll-binding protein IsiA is inducible by high light and protects the cyanobacterium Synechocystis PCC6803 from photooxidative stress. FEBS Lett 579(11):2289–2293

    Article  CAS  PubMed  Google Scholar 

  • Herranen M et al (2004) Towards functional proteomics of membrane protein complexes in Synechocystis sp. PCC 6803. Plant Physiol 134(1):470–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton P, Ruban A, Walters R (1996) Regulation of light harvesting in green plants. Annu Rev Plant Biol 47(1):655–684

    Article  CAS  Google Scholar 

  • Huang G et al (2021) Structural insights into a dimeric Psb27-photosystem II complex from a cyanobacterium Thermosynechococcus Vulcanus. Proc Natl Acad Sci 118(5):pe2018053118

    Article  Google Scholar 

  • Ihalainen JA et al (2005) Aggregates of the chlorophyll-binding protein IsiA (CP43 ‘) dissipate energy in cyanobacteria. Biochemistry 44(32):10846–10853

    Article  CAS  PubMed  Google Scholar 

  • Ivanov AG et al (2006) Iron deficiency in cyanobacteria causes monomerization of photosystem I trimers and reduces the capacity for state transitions and the effective absorption cross section of photosystem I in vivo. Plant Physiol 141(4):1436–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson VM et al (2022) Psb27, a photosystem II assembly protein, enables quenching of excess light energy during its participation in the PSII lifecycle. Photosynth Res 152(3):297–304

    Article  CAS  PubMed  Google Scholar 

  • Karapetyan NV (2008) Protective dissipation of excess absorbed energy by photosynthetic apparatus of cyanobacteria: role of antenna terminal emitters. Photosynth Res 97:195–204

    Article  CAS  PubMed  Google Scholar 

  • Lamb JJ, Røkke G, Hohmann-Marriott MF (2018) Chlorophyll fluorescence emission spectroscopy of oxygenic organisms at 77 K. Photosynthetica 56(1):105–124

    Article  CAS  Google Scholar 

  • Laudenbach DE, Straus NA (1988) Characterization of a cyanobacterial iron stress-induced gene similar to psbC. J Bacteriol 170(11):5018–5026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legaspi CM et al (2018) Rigidity and polarity effects on the electronic properties of two deep blue delayed fluorescence emitters. J Phys Chem C 122(22):11961–11972

    Article  CAS  Google Scholar 

  • Lockhart DJ, Boxer SG (1988) Electric field modulation of the fluorescence from Rhodobacter sphaeroides reaction centers. Chem Phys Lett 144(3):243–250

    Article  CAS  Google Scholar 

  • Mimuro M et al (2007) Delayed fluorescence observed in the nanosecond time region at 77 K originates directly from the photosystem II reaction center. Biochim et Biophys Acta (BBA)-Bioenergetics 1767(4):327–334

    Article  CAS  Google Scholar 

  • Moore LJ, Zhou H, Boxer SG (1999) Excited-state electronic asymmetry of the special pair in photosynthetic reaction center mutants: absorption and Stark spectroscopy. Biochemistry 38(37):11949–11960

    Article  CAS  PubMed  Google Scholar 

  • Murray JW, Duncan J, Barber J (2006) CP43-like chlorophyll binding proteins: structural and evolutionary implications. Trends Plant Sci 11(3):152–158

    Article  CAS  PubMed  Google Scholar 

  • Nakabayashi T, Wahadoszamen M, Ohta N (2005) External electric field effects on state energy and photoexcitation dynamics of diphenylpolyenes. J Am Chem Soc 127(19):7041–7052

    Article  CAS  PubMed  Google Scholar 

  • Nakatani H et al (1984) Identity of the photosystem II reaction center polypeptide Biochimica et Biophysica Acta (BBA)-Bioenergetics. 765(3):347–352

  • Novoderezhkin VI (2023) Excitonic interactions and Stark fluorescence spectra. J Chem Phys, 159(5)

  • Novoderezhkin VI, Dekker JP, Van Grondelle R (2007) Mixing of exciton and charge-transfer states in photosystem II reaction centers: modeling of stark spectra with modified redfield theory. Biophys J 93(4):1293–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odom WR et al (1993) Characterization of Synechocystis sp. PCC 6803 in iron-supplied and iron-deficient media. Plant Mol Biol 23:1255–1264

    Article  CAS  PubMed  Google Scholar 

  • Pakrasi HB, Goldenberg A, Sherman LA (1985) Membrane development in the cyanobacterium, Anacystis nidulans, during recovery from iron starvation. Plant Physiol 79(1):290–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero E et al (2009) The origin of the low-energy form of photosystem I light-harvesting complex Lhca4: mixing of the lowest exciton with a charge-transfer state. Biophys J 96(5):L35–L37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandström S et al (2001) CP43′, the isiA Gene product, functions as an Excitation Energy Dissipator in the Cyanobacterium Synechococcus sp. PCC 7942¶. Photochem Photobiol 74(3):431–437

    Article  PubMed  Google Scholar 

  • Sarcina M, Mullineaux CW (2004) Mobility of the IsiA chlorophyll-binding protein in cyanobacterial thylakoid membranes. J Biol Chem 279(35):36514–36518

    Article  CAS  PubMed  Google Scholar 

  • Somsen OJ et al (1998) Excitonic interactions and Stark spectroscopy of light harvesting systems. J Phys Chem B 102(44):8893–8908

    Article  CAS  Google Scholar 

  • Toporik H et al (2019) The structure of the stress-induced photosystem I–IsiA antenna supercomplex. Nat Struct Mol Biol 26(6):443–449

    Article  CAS  PubMed  Google Scholar 

  • van der Weij-de CD et al (2007) Fluorescence quenching of IsiA in early stage of iron deficiency and at cryogenic temperatures. Biochim et Biophys Acta (BBA)-Bioenergetics 1767(12):1393–1400

    Article  Google Scholar 

  • van Grondelle R et al (1994) Energy transfer and trapping in photosynthesis. Biochim et Biophys Acta (BBA)-Bioenergetics 1187(1):1–65

    Article  CAS  Google Scholar 

  • Vinnemeier J, Hagemann M (1999) Identification of salt-regulated genes in the genome of the cyanobacterium Synechocystis sp. strain PCC 6803 by subtractive RNA hybridization. Arch Microbiol 172:377–386

    Article  CAS  PubMed  Google Scholar 

  • Wahadoszamen M et al (2006) External electric field effects on absorption and fluorescence spectra of a fullerene derivative and its mixture with zinc-tetraphenylporphyrin doped in a PMMA film. J Phys Chem B 110(41):20354–20361

    Article  CAS  PubMed  Google Scholar 

  • Wahadoszamen M et al (2012) Identification of two emitting sites in the dissipative state of the major light harvesting antenna. Phys Chem Chem Phys 14(2):759–766

    Article  CAS  PubMed  Google Scholar 

  • Wahadoszamen M et al (2014a) Stark fluorescence spectroscopy reveals two emitting sites in the dissipative state of FCP antennas. Biochim et Biophys Acta (BBA)-Bioenergetics 1837(1):193–200

    Article  CAS  Google Scholar 

  • Wahadoszamen M et al (2014b) The role of charge-transfer states in energy transfer and dissipation within natural and artificial bacteriochlorophyll proteins. Nat Commun 5(1):5287

    Article  CAS  PubMed  Google Scholar 

  • Wahadoszamen M et al (2015) Identification of common motifs in the regulation of light harvesting: the case of cyanobacteria IsiA, vol 1847. BBA)-Bioenergetics, pp 486–492. 4–5Biochimica et Biophysica Acta

  • Wahadoszamen M et al (2016) Identification and characterization of multiple emissive species in aggregated minor antenna complexes. Biochim et Biophys Acta (BBA)-Bioenergetics 1857(12):1917–1924

    Article  CAS  PubMed  Google Scholar 

  • Wahadoszamen M et al (2020) Charge transfer states in phycobilisomes. Biochim et Biophys Acta (BBA)-Bioenergetics 1861(7):148187

    Article  CAS  Google Scholar 

  • Walters KA, Gaal DA, Hupp JT (2002) Interfacial charge transfer and colloidal semiconductor dye-sensitization: mechanism assessment via Stark emission spectroscopy. J Phys Chem B 106(20):5139–5142

    Article  CAS  Google Scholar 

  • Yeremenko N et al (2004) Supramolecular organization and dual function of the IsiA chlorophyll-binding protein in cyanobacteria. Biochemistry 43(32):10308–10313

    Article  CAS  PubMed  Google Scholar 

  • Zabret J et al (2021) Structural insights into photosystem II assembly. Nat Plants 7(4):524–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L-S et al (2022) Native architecture and acclimation of photosynthetic membranes in a fast-growing cyanobacterium. Plant Physiol 190(3):1883–1895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the contribution of Jos Thieme for his technical assistance. Md. W., A. M. A. and R. v. G. were supported by the VU University Amsterdam, the Laserlab-Europe Consortium and the advanced investigator grant (267333, PHOTPROT) from the European Research Council. Md. W. and R. v. G. were supported further by the TOP grant (700.58.305) from the Foundation of Chemical Sciences part of NWO.

Author information

Authors and Affiliations

Authors

Contributions

Md. W., A. M. A., and R. v. G. designed experiment. S.D prepared IsiA membrane. A. M. A, S. D., and Md. W. prepared Stark samples. Md. W. and A. M. A. carried out Stark experiments. A. M. A. and Md. W. performed Stark data analysis. A. M. A., S. D., R. v. G., and Md. W. wrote the manuscript.

Corresponding author

Correspondence to Md. Wahadoszamen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ara, A.M., D’Haene, S., van Grondelle, R. et al. Unveiling large charge transfer character of PSII in an iron-deficient cyanobacterial membrane: A Stark fluorescence spectroscopy study. Photosynth Res (2024). https://doi.org/10.1007/s11120-024-01099-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11120-024-01099-1

Keywords

Navigation