Skip to main content

Advertisement

Log in

Resonant vibrations produce quantum bridge over high-energy states in heterogeneous antenna

  • Research
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Photosynthetic light-harvesting complexes usually contain several pools of molecules with a big difference in transition energies, for example, chlorophylls a and b in plant antennas. Some pathways of the excitation energy transfer may include pigments from the low-energy pool separated by a site occupied by a high-energy molecule. We demonstrate that such pathways may be functional if high-frequency intramolecular vibrations fall in resonance with the energy gap between the neighboring molecules belonging to different pools. In this case, a vibration-assisted mixing of the excited states can produce delocalized vibronic states playing a role of ‘quantum bridge’ that facilitates a passage over high-energy barrier. We perform calculations of the excitation dynamics in the model three-state system with the parameters emerging from our previous studies of real antennas. Simulation of the dynamics in an explicit electron-vibrational basis demonstrates that the rate of transfer between the two chlorophylls a through the chlorophyll b intermediate is increased by a factor of 1.7–2 in the presence of resonant vibration. A possible influence of energetic disorder and other (non-resonant) vibrations on this effect is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Abramavicius D, Valkunas L (2015) Role of coherent vibrations in energy transfer and conversion in photosynthetic pigment—protein complexes. Photosynth Res 127:33–47

    Article  PubMed  Google Scholar 

  • Arsenault EA, Yoneda Y, Iwai M, Niyogi KK, Fleming GR (2020) Vibronic mixing enables ultrafast energy flow in light-harvesting complex II. Nat Commun 11:1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arsenault EA, Schile AJ, Limmer DT, Fleming GR (2021) Vibronic coupling in energy transfer dynamics and two-dimensional electronic-vibrational spectra. J Chem Phys 155:054201

    Article  CAS  PubMed  Google Scholar 

  • Bennett DIG, Maly P, Kreisbeck C, Van Grondelle R, Aspuru-Guzik A (2018) Mechanistic regimes of vibronic transport in a heterodimer and the design principle of incoherent vibronic transport in phycobiliproteins. J Phys Chem Lett 9:2665–2670

    Article  CAS  PubMed  Google Scholar 

  • Blankenship RE (2014) Molecular mechanisms of photosynthesis. Wiley-Blackwell, Hoboken

    Google Scholar 

  • Blau SM, Bennett DIG, Kreisbeck C, Scholes GD, Aspuru-Guzik A (2018) Local protein solvation drives direct down-conversion in phycobiliprotein PC645 via incoherent vibronic transport. Proc Natl Acad Sci USA 115:E3342–E3350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butkus V, Zigmantas D, Valkunas L, Abramavicius D (2012) Vibrational vs. electronic coherences in 2D spectrum of molecular systems. Chem Phys Lett 545:40–43

    Article  CAS  Google Scholar 

  • Butkus V, Zigmantas D, Abramavicius D, Valkunas L (2013) Distinctive character of electronic and vibrational coherences in disordered molecular aggregates. Chem Phys Lett 587:93–98

    Article  CAS  Google Scholar 

  • Caycedo-Soler F, Mattioni A, Lim J, Renger T, Huelga SF, Plenio MB (2022) Exact simulation of pigment-protein complexes unveils vibronic renormalization of electronic parameters in ultrafast spectroscopy. Nat Commun 13:2912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chenu A, Christensson N, Kauffmann HF, Mančal T (2013) Enhancement of vibronic and ground-state vibrational coherences in 2D spectra of photosynthetic complexes. Sci Rep 3:2029

    Article  PubMed  PubMed Central  Google Scholar 

  • Chin AW, Huelga SF, Plenio MB (2012) Coherence and decoherence in biological systems: principles of noise-assisted transport and the origin of long-lived coherences. Philos Trans R Soc A 370:3638–3657

    Article  CAS  Google Scholar 

  • Chin AW, Prior J, Rosenbach R, Caycedo-Soler F, Huelga SF, Plenio MB (2013) The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes. Nat Phys 9:113–118

    Article  CAS  Google Scholar 

  • Christensson N, Kauffmann HF, Pullerits T, Mančal T (2012) Origin of long-lived coherences in light-harvesting complexes. J Phys Chem B 116:7449–7454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croce R, van Amerongen H (2020) Light harvesting in oxygenic photosynthesis: structural biology meets spectroscopy. Science 369:2058

    Article  Google Scholar 

  • Dijkstra AG, Wang C, Cao J, Fleming GR (2015) Coherent exciton dynamics in the presence of underdamped vibrations. J Chem Phys Lett 6:627–632

    Article  CAS  Google Scholar 

  • Fassioli F, Olaya-Castro A, Scholes GD (2012) Coherent energy transfer under incoherent light conditions. J Phys Chem Lett 3:3136–3142

    Article  CAS  PubMed  Google Scholar 

  • Fuller FD, Pan J, Gelzinis A, Butkus V, Senlik SS, Wilcox DE, Yocum CF, Valkunas L, Abramavicius D, Ogilvie JP (2014) Vibronic coherence in oxygenic photosynthesis. Nat Chem 6:706–711

    Article  CAS  PubMed  Google Scholar 

  • Gelzinis A, Valkunas L, Fuller FD, Ogilvie JP, Mukamel S, Abramavicius D (2013) Tight-binding model of the photosystem II reaction center: application to two-dimensional electronic spectroscopy. New J Phys 15:075013

    Article  CAS  Google Scholar 

  • Gelzinis A, Abramavicius D, Ogilvie JP, Valkunas L (2017) Spectroscopic properties of photosystem II reaction center revisited. J Chem Phys 147:115102

    Article  PubMed  Google Scholar 

  • Hein B, Kreisbeck C, Kramer T, Rodríguez M (2012) Modelling of oscillations in two-dimensional echo-spectra of the Fenna Matthews Olson complex. New J Phys 14:023018

    Article  Google Scholar 

  • Jean JM (1994) Time- and frequency-resolved spontaneous emission as a probe of coherence effects in ultrafast electron transfer reactions. J Chem Phys 101:10464–10473

    Article  CAS  Google Scholar 

  • Jean JM, Friesner RA, Fleming GR (1992) Application of a multilevel redfield theory to electron transfer in condensed phases. J Chem Phys 96:5827–5842

    Article  CAS  Google Scholar 

  • Kolli A, Nazir A, Olaya-Castro A (2011) Electronic excitation dynamics in multichromophoric systems described via a polaron-representation master equation. J Chem Phys 135:154112

    Article  PubMed  Google Scholar 

  • Kolli A, O’Reilly EJ, Scholes GD, Olaya-Castro A (2012) The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae. J Chem Phys 137:174109

    Article  PubMed  Google Scholar 

  • Kreisbeck C, Kramer T (2012) Long-lived electronic coherence in dissipative exciton-dynamics of light-harvesting complexes. J Chem Phys Lett 3:2828–2833

    Article  CAS  Google Scholar 

  • Krüger TPJ, Wientjes E, Croce R, van Grondelle R (2011) Conformational switching explains the intrinsic multifunctionality of plant light-harvesting complexes. Proc Natl Acad Sci USA 108:13516–13521

    Article  PubMed  PubMed Central  Google Scholar 

  • Malý P, Somsen OJG, Novoderezhkin VI, Mančal T, van Grondelle R (2016) The role of resonant vibrations in electronic energy transfer. ChemPhysChem 17:1356–1368

    Article  PubMed  PubMed Central  Google Scholar 

  • Malý P, Novoderezhkin VI, van Grondelle R, Mančal T (2019) Electron-vibrational coupling decreases trapping by low-energy states in photosynthesis. Chem Phys 522:69–76

    Article  Google Scholar 

  • Müh F, Renger T (2012) Refined structure-based simulation of plant light-harvesting complex II: linear optical spectra of trimers and aggregates. Biochim Biophys Acta 1817:1446–1460

    Article  PubMed  Google Scholar 

  • Novoderezhkin VI, Croce R (2023) The location of the low-energy states in Lhca1 favors excitation energy transfer to the core in the plant PSI-LHCI supercomplex. Photosynth Res 156:59–74

    Article  CAS  PubMed  Google Scholar 

  • Novoderezhkin VI, Palacios MA, van Amerongen H, van Grondelle R (2005) Excitation dynamics in the LHCII complex of higher plants: modeling based on the 2.72 Å crystal structure. J Phys Chem B 109:10493–10504

    Article  CAS  PubMed  Google Scholar 

  • Novoderezhkin V, Marin A, van Grondelle R (2011) Intra- and inter-monomeric transfers in the light harvesting LHCII complex: the Redfield-Förster picture. Phys Chem Chem Phys 13:17093–17103

    Article  CAS  PubMed  Google Scholar 

  • Novoderezhkin VI, Croce R, Wahadoszamen M, Polukhina I, Romero E, van Grondelle R (2016) Mixing of exciton and charge-transfer states in light-harvesting complex Lhca4. Phys Chem Chem Phys 18:19368–19377

    Article  CAS  PubMed  Google Scholar 

  • Novoderezhkin VI, Romero E, Prior J, van Grondelle R (2017) Exciton-vibrational resonance and dynamics of charge separation in the photosystem II reaction center. Phys Chem Chem Phys 19:5195–5208

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly EJ, Olaya-Castro A (2014) Non-classicality of the molecular vibrations assisting exciton energy transfer at room temperature. Nat Commun 5:3012

    Article  PubMed  Google Scholar 

  • Peterman EJG, Pullerits T, van Grondelle R, van Amerongen H (1997) Electron-phonon coupling and vibronic fine structure of light-harvesting complex II of green plants: temperature dependent absorption and high-resolution fluorescence spectroscopy. J Phys Chem B 101:4448–4457

    Article  CAS  Google Scholar 

  • Pollard WT, Friesner RA (1994) Solution of the Redfield equation for the dissipative quantum dynamics of multilevel systems. J Chem Phys 100:5054–5065

    Article  CAS  Google Scholar 

  • Pollard WT, Felts AK, Friesner RA (1996) The Redfield equation in condensed phase quantum dynamics. Adv Chem Phys 93:77–134

    CAS  Google Scholar 

  • Qin X, Suga M, Kuang T, Shen J-R (2015) Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science 348:989–995

    Article  CAS  PubMed  Google Scholar 

  • Redfield AG (1965) The theory of relaxation processes. Adv Magn Opt Reson 1:1–32

    Article  Google Scholar 

  • Reimers JR, Biczysko M, Bruce D, Coker DF, Frankcombe TJ, Hashimoto H, Hauer J, Jankowiak R, Kramer T, Linnanto J, Mamedov F, Müh F, Rätsep M, Renger T, Styring S, Wan J, Wang Z, Wang-Otomo Z-Y, Weng Y-X, Yang C, Zhang J-P, Freiberg A, Krausz E (2016) Challenges facing an understanding of the nature of low-energy excited states in photosynthesis. Biochim Biophys Acta—Bioenergetics 1857:1627–1640

    Article  CAS  Google Scholar 

  • Romero E, Augulis R, Novoderezhkin VI, Ferretti M, Thieme J, Zigmantas D, van Grondelle R (2014) Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat Phys 10:676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero E, Novoderezhkin V, van Grondelle R (2017) Quantum design of photosynthesis for bio-inspired solar-energy conversion. Nature 543:355–365

    Article  CAS  PubMed  Google Scholar 

  • Schröter M, Ivanov S, Schulze J, Polyutov S, Yan Y, Pullerits T, Kühn O (2015) Exciton-vibrational coupling in the dynamics and spectroscopy of Frenkel excitons in molecular aggregates. Phys Rep 567:1–78

    Article  Google Scholar 

  • Tiwari V, Peters WK, Jonas DM (2013) Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc Natl Acad Sci USA 110:1203–1208

    Article  CAS  PubMed  Google Scholar 

  • Tiwari V, Peters WK, Jonas DM (2017) Electronic energy transfer through non-adiabatic vibrational-electronic resonance: I. theory for a dimer. J Chem Phys 147:154308

    Article  PubMed  Google Scholar 

  • Womick JM, Moran AM (2011) Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes. J Phys Chem B 115:1347–1356

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

VN wrote the text, prepared the figures, and reviewed the manuscript

Corresponding author

Correspondence to Vladimir I. Novoderezhkin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 107 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novoderezhkin, V.I. Resonant vibrations produce quantum bridge over high-energy states in heterogeneous antenna. Photosynth Res 158, 13–21 (2023). https://doi.org/10.1007/s11120-023-01042-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-023-01042-w

Keywords

Navigation