Skip to main content
Log in

Effect of cationic antiseptics on fluorescent characteristics and electron transfer in cyanobacterial photosystem I complexes

  • Research
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In this study, the effects of cationic antiseptics such as chlorhexidine, picloxidine, miramistin, and octenidine at concentrations up to 150 µM on fluorescence spectra and its lifetimes, as well as on light-induced electron transfer in protein-pigment complexes of photosystem I (PSI) isolated from cyanobacterium Synechocystis sp. PCC 6803 have been studied. In doing so, octenidine turned out to be the most “effective” in terms of its influence on the spectral and functional characteristics of PSI complexes. It has been shown that the rate of energy migration from short-wavelength forms of light-harvesting chlorophyll to long-wavelength ones slows down upon addition of octenidine to the PSI suspension. After photo-separation of charges between the primary electron donor P700 and the terminal iron-sulfur center(s) FA/FB, the rate of forward electron transfer from (FA/FB) to the external medium slows down while the rate of charge recombination between reduced FA/FB and photooxidized P700+ increases. The paper considers the possible causes of the observed action of the antiseptic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson SL, McIntosh L (1991) Partial conservation of the 5’ndhE-psaC-ndhD 3’ gene arrangement of chloroplasts in the cyanobacterium Synechocystis sp. PCC 6803: implications for NDH-D function in cyanobacteria and chloroplasts. Plant MolBiol 16:487–499

    CAS  Google Scholar 

  • Byrdin M, Rimke I, Schlodder E, Stehlik D, Roelofs TA (2000) Decay kinetics and quantum yields of fluorescence in photosystem I from Synechococcus elongatus with P700 in the reduced and oxidized state: are the kinetics of excited state decay traplimited or transfer-limited? Biophys J 79:992–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherubin A, Destefanis L, Bovi M et al (2019) Encapsulation of photosystem I in organic microparticles increases its photochemical activity and stability for ex vivo photocatalysis. ACS Sustain Chem Eng 7:10435–10444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Mohsnawy E, Kopczak MJ, Schlodder E, Nowaczyk M, Meyer HE, Warscheid B, Karapetyan NV, Rogner M (2010) Structure and function of intact photosystem I monomers from the cyanobacterium Thermosynechococcus elongatus. Biochemistry 49:4740–4751

    Article  CAS  PubMed  Google Scholar 

  • Fromme P (2004) Photosystem I, structure and function. Encyclopedia of biological chemistry, vol 3. Elsevier, Amsterdam, pp 342–347

    Chapter  Google Scholar 

  • Gobets B, van Stokkum IHM, Rögner M, Kruip J, Schlodder E, Karapetyan NV, Dekker JP, van Grondelle R (2001) Timeresolved fluorescence emission measurements of photosystem I particles of various cyanobacteria: a unified compartmental model. Biophys J 81:407–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gobets B, van Stokkum IHM, van Mourik F, Dekker JP, van Grondelle R (2003) Excitation wavelength dependence of the fluorescence kinetics in photosystem I particles from Synechocystis PCC 6803 and Synechococcus elongatus. Biophys J 85:3883–3898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golbeck JH (ed) (2006) Photosystem I: the light-driven plastocyanin: ferredoxinoxidoreductase. Springer, New York

    Book  Google Scholar 

  • Gvozdev DA, Lukashev EP, Gorokhov VV, Paschenko VZ (2019) Photophysical properties of upconverted nanoparticles photocyanine complexes. Biochem Mosc 84:911–922

    Article  CAS  Google Scholar 

  • Hastings G, Kleinherenbrink AM, Lin S, Blankenship RE (1994) Time-resolved fluorescence and absorption spectroscopy of photosystem I. Biochemistry 33:3185–3192

    Article  CAS  PubMed  Google Scholar 

  • Hippler M, Nelson N (2021) The plasticity of photosystem I. Plant Cell Physiol 62:1073–1081

    Article  CAS  PubMed  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobaoterial photosystem I at 2.5 Å resolution. Nature 411:909–917

    Article  CAS  PubMed  Google Scholar 

  • Kholina EG, Kovalenko IB, Bozdaganyan ME, Strakhovskaya MG, Orekhov PS (2020) Cationic antiseptics facilitate pore formation in model bacterial membranes. J Phys Chem B 124:8593–8600

    Article  CAS  PubMed  Google Scholar 

  • Knox PP, Lukashev EP, Korvatovskiy BN, Strakhovskaya MG, Makhneva ZK, Bol’shakov MA, Paschenko VZ (2022) Disproportionate effect of cationic antiseptics on the quantum yield and fuorescence lifetime of bacteriochlorophyll molecules in the LH1-RC complex of R. rubrum chromatophores. Photosynth Res 153:103–112

    Article  CAS  PubMed  Google Scholar 

  • Makita H, Hasings G (2015) Directionality of electron transfer in cyanobacterial photosystem I at 298 and 77 K. FEBS Lett 289:1412–1417

    Article  Google Scholar 

  • Malanovic N, Ön A, Pabst G, Zellner A, Lohner K (2020) Octenidine: novel insights into the detailed killing mechanism of Gram-negative bacteria at a cellular and molecular level. Int J Antimicrob Agents 56:106146

    Article  CAS  PubMed  Google Scholar 

  • Mamedov MD, Kurashov VD, Cherepanov DA, Semenov AYu (2010) Photosystem II: where does the light-induced voltage come from? Front Biosci 15:1007–1017

    Article  CAS  Google Scholar 

  • Milanovsky GE, Petrova AA, Cherepanov DA, Semenov AYu (2017) Kinetic modeling of electron transfer reactions in photosystem I complexes of various structures with substituted quinone acceptors. Photosynth Res 133:185–199

    Article  CAS  PubMed  Google Scholar 

  • Paschenko VZ, Lukashev EP, Mamedov MD, Korvatovskiy BN, Knox PP (2023) Influence of the antiseptic octenidine on spectral characteristics and energy migration processes in photosystem II core complexes. Photosynth Res 155:93–105

    Article  CAS  PubMed  Google Scholar 

  • Pishchalnikov RYu, Shubin VV, Razjivin AP (2017) Spectral differences between monomers and trimers of photosystem I depend on the interaction between peripheral chlorophylls of neighboring monomers in trimer. Phys Wave Phenom 25:185–195

    Article  Google Scholar 

  • Raymond J, Blankenship RE (2004) The evolutionary development of the protein complement of Photosystem 2. Biochim Biophys Acta 1655:133–139

    Article  CAS  PubMed  Google Scholar 

  • Reszczyńska E, Hanaka A (2020) Lipids composition in plant membranes. Cell Biochem Biophys 78:401–414

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers LJ (1987) Ferredoxins, flavodoxins and related proteins: structure, function and evolution. In: Fay P, Van Baalen C (eds) The cyanobacteria. Elsevier, Amsterdam, pp 35–67

    Google Scholar 

  • Rzycki M, Drabik D, Szostak-Paluch K, Hanus-Lorenz B, Kraszewski S (2021) Unraveling the mechanism of octenidine and chlorhexidine on membranes: does electrostatics matter? Biophys J 120:3392–3408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen G, Zhao J, Reimer SK, Antonkine ML, Cai Q, Weiland SM, Golbeck JH, Bryant DA (2002) Assembly of photosystem I. I. Inactivation of the rubA gene encoding a membrane associated rubredoxin in the cyanobacterium Synechococcus sp. PCC 7002 causes a loss of photosystem I activity. J Biol Chem 277:20343–20354

    Article  CAS  PubMed  Google Scholar 

  • Sheng X, Liu X, Cao P, Li M, Liu Z (2018) Structural roles of lipid molecules in the assembly of plant PSII-LHCII supercomplex. Biophys Rep 4:189–203

    Article  CAS  PubMed  Google Scholar 

  • Smart L, Anderson S, McIntosh L (1991) Targeted genetic inactivation of the photosystem I reaction center in the cyanobacterium Synechocystis sp. PCC-6803. EMBO J 10:3289–3296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steffen R, Kelly AA, Huyer J, Dörmann P, Renger G (2005) Investigations on the reaction pattern of photosystem II in leaves from Arabidopsis thaliana wild type plants and mutants with genetically modified lipid content. Biochemistry 44:3134–3142

    Article  CAS  PubMed  Google Scholar 

  • Strakhovskaya MG, Lukashev EP, Korvatovskiy BN, Kholina EG, Seifullina NKh, Knox PP, Paschenko VZ (2021) The effect of some antiseptic drugs on the energy transfer in chromatophore photosynthetic membranes of purple non-sulfur bacteria Rhodobacter sphaeroides. Photosynth Res 147:197–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szewczyk S, Giera W, D’Haene S, van Grondelle R, Gibasiewicz K (2017) Comparison of excitation energy transfer in cyanobacterial photosystem I in solution and immobilized on conducting glass. Photosynth Res 132:111–126

    Article  CAS  PubMed  Google Scholar 

  • Teodor AH, Bruce BD (2020) Putting photosystem I to work: truly green energy. Trends Biotechnol 38:1329–1342

    Article  CAS  PubMed  Google Scholar 

  • Toporik H, Khmelnitskiy A, Dobson Z, Riddle R, Williams D, Lin S, Jankowiak R, Mazor Y (2020) The structure of a red-shifted photosystem I reveals a red site in the core antenna. Nat Commun 11:5279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tributsin BV, Mamedov MD, Semenov AYu, Tikhonov AN (2014) Interaction of ascorbate with photosystem I. Photosynth Res 122(215):231

    Google Scholar 

  • Turconi S, Kruip J, Schweitzer G, Rögner M, Holzwarth AR (1996) A comparative fluorescence kinetics study of photosystem I monomers and trimers from Synechocystis PCC 6803. Photosynth Res 49:263–268

    Article  CAS  PubMed  Google Scholar 

  • Vassiliev IR, Jung Y-S, Mamedov MD, Semenov AYu, Golbeck JH (1997) Near-IR absorbance changes and electrogenic reactions in the microsecond-to-second time domain in photosystem I. Biophys J 72:301–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding was provided by Science Project of the State Order of the Government of Russian Federation (121032500058-7).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: VZP, PPK. Methodology: EPL, MDM. Formal analysis and investigation: EPL, MDM, DAG. Writing—original draft preparation: MDM, PPK. Writing—review and editing: VZP, EPL, MDM, DAG, PPK. Supervision: VZP.

Corresponding author

Correspondence to Daniil A. Gvozdev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paschenko, V.Z., Lukashev, E.P., Mamedov, M.D. et al. Effect of cationic antiseptics on fluorescent characteristics and electron transfer in cyanobacterial photosystem I complexes. Photosynth Res 159, 241–251 (2024). https://doi.org/10.1007/s11120-023-01039-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-023-01039-5

Keywords

Navigation