Skip to main content
Log in

Diversity of responses to nitrogen deficiency in distinct wheat genotypes reveals the role of alternative electron flows in photoprotection

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Nitrogen (N) deficiency represents an important limiting factor affecting photosynthetic productivity and the yields of crop plants. Significant reported differences in N use efficiency between the crop species and genotypes provide a good background for the studies of diversity of photosynthetic and photoprotective responses associated with nitrogen deficiency. Using distinct wheat (Triticum aestivum L.) genotypes with previously observed contrasting responses to nitrogen nutrition (cv. Enola and cv. Slomer), we performed advanced analyses of CO2 assimilation, PSII, and PSI photochemistry, also focusing on the heterogeneity of the stress responses in the different leaf levels. Our results confirmed the loss of photosynthetic capacity and enhanced more in lower positions. Non-stomatal limitation of photosynthesis was well reflected by the changes in PSII and PSI photochemistry, including the parameters derived from the fast-fluorescence kinetics. Low photosynthesis in N-deprived leaves, especially in lower positions, was associated with a significant decrease in the activity of alternative electron flows. The exception was the cyclic electron flow around PSI that was enhanced in most of the samples with a low photosynthetic rate. We observed significant genotype-specific responses. An old genotype Slomer with a lower CO2 assimilation rate demonstrated enhanced alternative electron flow and photorespiration capacity. In contrast, a modern, highly productive genotype Enola responded to decreased photosynthesis by a significant increase in nonphotochemical dissipation and cyclic electron flow. Our results illustrate the importance of alternative electron flows for eliminating the excitation pressure at the PSII acceptor side. The decrease in capacity of electron acceptors was balanced by the structural and functional changes of the components of the electron transport chain, leading to a decline of linear electron transport to prevent the overreduction of the PSI acceptor side and related photooxidative damage of photosynthetic structures in leaves exposed to nitrogen deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen JF (2003) Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. Trends Plant Sci 8:15–19

    Article  CAS  Google Scholar 

  • Anten NPR, Schieving F, Werger MJA (1995) Patterns of light and nitrogen distribution in relation to whole canopy carbon gain in C3 and C4 mono-and dicotyledonous species. Oecologia 101:504–513

    Article  CAS  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Ann Rev Plant Biol 59:89–113

    Article  CAS  Google Scholar 

  • Brestic M, Zivcak M, Kunderlikova K, Sytar O, Shao H, Kalaji HM, Allakhverdiev SI (2015) Low PSI content limits the photoprotection of PSI and PSII in early growth stages of chlorophyll b-deficient wheat mutant lines. Photosynth Res 125:151–166

    Article  CAS  Google Scholar 

  • Broadley MR, Escobar-Gutiérrez AJ, Burns A, Burns IG (2001) Nitrogen-limited growth of lettuce is associated with lower stomatal conductance. New Phytol 152:97–106

    Article  Google Scholar 

  • Bukhov NG, Carpentier R (2003) Measurement of photochemical quenching of absorbed quanta in photosystem I of intact leaves using simultaneous measurements of absorbance changes at 830 nm and thermal dissipation. Planta 216:630–638

    Article  CAS  Google Scholar 

  • Bunce JA (2018) Thermal acclimation of the temperature dependence of the VCmax of Rubisco in quinoa. Photosynthetica 56:1171–1176

    Article  CAS  Google Scholar 

  • Bussotti F, Desotgiu R, Cascio C, Pollastrini M, Gravano E, Gerosa G, Marzuoli R, Nali C, Lorenzini G, Salvatori E, Manes F, Schaub M, Strasser RJ (2011) Ozone stress in woody plants assessed with chlorophyll a fluorescence: a critical reassessment of existing data. Environ Exp Bot 73:19–30

    Article  CAS  Google Scholar 

  • Cai YF, Yang QY, Li SF, Wang JH, Huang W (2017) The water-water cycle is a major electron sink in Camellia species when CO2 assimilation is restricted. J Photochem Photobiol B Biol 168:59–66

    Article  CAS  Google Scholar 

  • Cascio C, Schaub M, Novak K, Desotgiu R, Bussotti F, Strasser RJ (2010) Foliar responses to ozone of Fagus sylvatica L. seedlings grown in shaded and in full sunlight conditions. Environ Exp Bot 68:188–197

    Article  CAS  Google Scholar 

  • Ceppi MG, Oukarroum A, Çiçek N, Strasser RJ, Schansker G (2012) The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: a study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress. Physiol Plant 144(3):277–288

    Article  CAS  Google Scholar 

  • Chen H, Hu J, Qiao Y, Chen W, Rong J, Zhang Y, He C, Wang Q (2015) Ca2+-regulated cyclic electron flow supplies ATP for nitrogen starvation-induced lipid biosynthesis in green alga. Sci Rep 5:15117

    Article  CAS  Google Scholar 

  • Connor DJ, Sadras VO, Hall AJ (1995) Canopy N distribution and the photosynthetic performance of sunflower crops during grain filling—a quantitative analysis. Oecologia 101:274–281

    Article  CAS  Google Scholar 

  • Crafts-Brandner SJ, Holzer R, Feller U (1998) Influence of nitrogen deficiency on senescence and the amounts of RNA and proteins in wheat leaves. Physiol Plant 102:192–200

    Article  CAS  Google Scholar 

  • Domínguez F, Cejudo FJ (2021) Chloroplast dismantling in leaf senescence. J Exp Bot 72(16):5905–5918

    Article  Google Scholar 

  • Eichelmann H, Oja V, Peterson RB, Laisk A (2011) The rate of nitrite reduction in leaves as indicated by O2 and CO2 exchange during photosynthesis. J Exp Bot 62:2205–2215

    Article  CAS  Google Scholar 

  • Epron D, Godard G, Cornic G, Genty B (1995) Limitation of net CO2 assimilation rate by internal resistances to CO2 transfer in the leaves of two tree species (Fagus sylvatica and Castanea sativa Mill.). Plant Cell Environ 18:43–51

    Article  Google Scholar 

  • Ethier GJ, Livingston NJ (2004) On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant Cell Environ 27:137–153

    Article  CAS  Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19

    Article  Google Scholar 

  • Evans JR (2019) and VC Clarke. The Nitrogen Cost of Photosynthesis J Exp Bot 70:7–15

    CAS  Google Scholar 

  • Follett RH, Follett RF (1992) Use of a chlorophyll meter to evaluate the nitrogen status of dryland winter wheat. Commun Soil Sci Plant Anal 23:687–697

    Article  Google Scholar 

  • Foyer C, Furbank R, Harbinson J, Horton P (1990) The mechanisms contributing to photosynthetic control of electron transport by carbon assimilation in leaves. Photosynth Res 25:83–100

    Article  CAS  Google Scholar 

  • Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J (2012) Photosynthetic control of electron transport and the regulation of gene expression. J Exp Bot 63:1637–1661

    Article  CAS  Google Scholar 

  • Galmes J, Medrano H, Jaume F (2006) Acclimation of Rubisco specificity factor to drought in tobacco: discrepancies between in vitro and in vivo estimations. J Exp Bot 57:3659–3667

    Article  CAS  Google Scholar 

  • Gao J, Wang F, Hu H, Jiang S, Muhammad A, Shao Y, Sun C, Tian Z, Jiang D, Dai T (2018) Improved leaf nitrogen reutilisation and Rubisco activation under short-term nitrogen-deficient conditions promotes photosynthesis in winter wheat (Triticum aestivum L.) at the seedling stage. Funct Plant Biol 45:840–853

    Article  CAS  Google Scholar 

  • Gastal F, Lemaire G (2002) N uptake and distribution in crops: An agronomical and ecophysiological perspective. J Exp Bot 53:789–799

    Article  CAS  Google Scholar 

  • Gooding MJ, Davies WP (1997) Wheat production and utilization: systems, quality and the environment. CAB International, Wallingford, UK

    Book  Google Scholar 

  • Gregersen PL, Holm PB, Krupinska K (2008) Leaf senescence and nutrient remobilisation in barley and wheat. Plant Biol 10:37–49

    Article  CAS  Google Scholar 

  • Grieco M, Roustan V, Dermendjiev G, Rantala S, Jain A, Leonardelli M et al (2020) Adjustment of photosynthetic activity to drought and fluctuating light in wheat. Plant, Cell Environ 43:1484–1500

    Article  CAS  Google Scholar 

  • Harley PC, Loreto F, Di Marco G, Sharkey TD (1992) Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol 98:1429–1436

    Article  CAS  Google Scholar 

  • Huang W, Sun H, Tan SL, Zhang SB (2021) The water-water cycle is not a major alternative sink in fluctuating light at chilling temperature. Plant Sci 305:110828

    Article  CAS  Google Scholar 

  • Huang W, Yang SJ, Zhang SB, Zhang JL, Cao KF (2012) Cyclic electron flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress. Planta 235:819–828

    Article  CAS  Google Scholar 

  • Huang W, Yang YJ, Zhang ZB (2017) Specific roles of cyclic electron flow around photosystem I in photosynthetic regulation in immature and mature leaves. J Plant Physiol 209:76–83

    Article  CAS  Google Scholar 

  • Huang W, Yang YJ, Hu H, Zhang SB (2016) Response of the water-water cycle to the change in photorespiration in tobacco. J Photochem Photobiol B 157:97–104

    Article  CAS  Google Scholar 

  • Huang W, Zhang SB, Cao KF (2011) Cyclic electron flow plays an important role in photoprotection of tropical trees illuminated at temporal chilling temperature. Plant Cell Physiol 52:297–305

    Article  CAS  Google Scholar 

  • Ivanov AG, Morgan-Kiss RM, Krol M, Allakhverdiev SI, Zanev Yu, Sane PV, Hüner NPA (2015) Photoinhibition of photosystem I in a pea mutant with altered LHCII organization. J Photochem Photobiol B 152:335–346

    Article  CAS  Google Scholar 

  • Jiang YP, Huang LF, Cheng F, Zhou YH, Xia XJ, Mao WH, Shi K, Yu JQ (2013) Brassinosteroids accelerate recovery of photosynthetic apparatus from cold stress by balancing the electron partitioning, carboxylation and redox homeostasis in cucumber. Physiol Plantarum 148(1):133–145

    Article  CAS  Google Scholar 

  • Kang J, Chu Y, Ma G, Zhang Y et al (2022) Physiological mechanisms underlying reduced photosynthesis in wheat leaves grown in the field under conditions of nitrogen and water deficiency. The Crop Journal. https://doi.org/10.1016/j.cj.2022.06.010

    Article  Google Scholar 

  • Kant S, Bi YM, Rothstein SJ (2011) Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. J Exp Bot 62:1499–1509

    Article  CAS  Google Scholar 

  • Kichey T, Heumez E, Pocholle D, Pageau K, Vanacker H, Dubois F, Le Gouis J, Hirel B (2006) Combined agronomic and physiological aspects of nitrogen management in wheat highlight a central role for glutamine synthetase. New Phytol 169:265–278

    Article  CAS  Google Scholar 

  • Klughammer C, Schreiber U (1994) Saturation pulse method for assessment of energy conversion in PSI. Planta 192:261–268

    Article  CAS  Google Scholar 

  • Kocheva K, Kartseva T, Nenova V, Georgiev G, Brestič M, Misheva S (2020) Nitrogen assimilation and photosynthetic capacity of wheat genotypes under optimal and deficient nitrogen supply. Physiol Mol Biol Plants 26(11):2139–2149

    Article  CAS  Google Scholar 

  • Kolber Z, Zehr J, Falkowski PG (1988) Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in Photosystem II. Plant Physiol 88:72–79

    Article  Google Scholar 

  • Kong L, Sun M, Xie Y, Wang F, Zhao Z (2015) Photochemical and antioxidative responses of the glume and flag leaf to seasonal senescence in wheat. Front Plant Sci 6:358

    Article  Google Scholar 

  • Kong L, Xie Y, Hu L, Feng B, Li S (2016) Remobilization of vegetative nitrogen to developing grain in wheat (Triticum aestivum L.). Field Crops Res 196:134–144

    Article  Google Scholar 

  • Kono M, Noguchi K, Terashima I (2014) Roles of the cyclic electron flow around PSI (CEF-PSI) and O2-dependent alternative pathways in regulation of the photosynthetic electron flow in short-term fluctuating light in Arabidopsis thaliana. Plant Cell Physiol 55:990–1004

    Article  CAS  Google Scholar 

  • Kono M, Terashima I (2016) Elucidation of photoprotective mechanisms of PSI against fluctuating light photoinhibition. Plant Cell Physiol 57:1405–1414

    CAS  Google Scholar 

  • Kornyeyev D, Logan BA, Holaday AS (2010) Excitation pressure as a measure of the sensitivity of photosystem II to photoinactivation. Funct Plant Biol 37:943–951

    Article  CAS  Google Scholar 

  • Kraiser T, Gras DE, Gutiérrez AG, González B, Gutiérrez RA (2011) A holistic view of nitrogen acquisition in plants. J Exp Bot 62:1455–1466

    Article  CAS  Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218

    Article  CAS  Google Scholar 

  • Krupinska K (2006) Fate and Activities of Plastids During Leaf Senescence, vol 22. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Landjeva S, Koutev V, Tsenov N, Chamurlijski P, Trifonova T, Nenova V, Kartseva T, Kocheva K, Petrov P, Georgiev G (2014) Productivity and nitrogen use efficiency in bread wheat—a comparative analysis of old and modern Bulgarian cultivars. Sci Works Ins Agricult Karnobat 3:267–276

    Google Scholar 

  • Lin Y, Zhang J, Gao W, Chen Y, Li H, Lawlor DW, Paul MJ, Pan W (2017) Exogenous trehalose improves growth under limiting nitrogen through upregulation of nitrogen metabolism. BMC Plant Biol 17:247

    Article  Google Scholar 

  • Lu CM, Zhang JH, Zhang QD, Li LB, Kuang TY (2001a) Modification of Photosystem II photochemistry in nitrogen deficient maize and wheat plants. J Plant Physiol 158:1423–1430

    Article  CAS  Google Scholar 

  • Lu X, Lu S (2015) Effects of adaxial and abaxial surface on the estimation of leaf chlorophyll content using hyperspectral vegetation indices. Int J Remote Sens 36(5):1447–1469

    Article  Google Scholar 

  • Lu CM, Lu QT, Zhang JH, Kuang TY (2001b) Characterization of photosynthetic pigment composition, Photosystem II pho-tochemistry and thermal energy dissipation during leaf senescence of wheat plants grown in the field. J Exp Bot 52:1805–1810

    Article  CAS  Google Scholar 

  • Makino A (2003) Rubisco and nitrogen relationships in rice: leaf photosynthesis and plant growth. Soil Sci Plant Nutr 49:319–327

    Article  CAS  Google Scholar 

  • Makino A, Sato T, Nakano H, Mae T (1997) Leaf photosynthesis, plant growth and nitrogen allocation in rice under different irradiances. Planta 203:390–398

    Article  CAS  Google Scholar 

  • Masclaux-Daubresse C, Reisdorf-Cren M, Orsel M (2008) Leaf nitrogen remobilisation for plant development and grain filling. Plant Biol 10:23–36

    Article  CAS  Google Scholar 

  • Miyake C (2010) Alternative electron flows (water–water cycle and cyclic electron flow around PSI) in photosynthesis: molecular mechanisms and physiological functions. Plant Cell Physiol 51:1951–1963

    Article  CAS  Google Scholar 

  • Miyake C, Horiguchi S, Makino A, Shinzaki Y, Yamamoto H, Tomizawa K (2005) Effects of light intensity on cyclic electron flow around PSI and its relationship to nonphotochemical quenching of chl fluorescence in tobacco leaves. Plant Cell Physiol 46:1819–1830

    Article  CAS  Google Scholar 

  • Mu X, Chen Q, Chen F, Yuan L, Mi G (2016) Within-leaf nitrogen allocation in adaptation to low nitrogen supply in maize during grain-filling stage. Front Plant Sci 7:699

    Article  Google Scholar 

  • Mu X, Chen Q, Chen F, Yuan L, Mi G (2018) Dynamic remobilization of leaf nitrogen components in relation to photosynthetic rate during grain filling in maize. Plant Physiol Biochem 129:27–34

    Article  CAS  Google Scholar 

  • Mu X, Chen Y (2021) The physiological response of photosynthesis to nitrogen deficiency. Plant Physiol Biochem 158:76–82

    Article  CAS  Google Scholar 

  • Munekage Y, Hashimoto M, Miyake C, Tomizawa KI, Endo T, Tasaka M, Shikanai T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429:579–582

    Article  CAS  Google Scholar 

  • Nakano H, Makino A, Mae T (1997) The effect of elevated partial pressures of CO2 on the relationship between photosynthetic capacity and N content in rice leaves. Plant Physiol 115:191–198

    Article  CAS  Google Scholar 

  • Nikiforou C, Manetas Y (2011) Inherent nitrogen deficiency in Pistacia lentiscus preferentially affects photosystem I: a seasonal field study. Funct Plant Biol 38:848–855

    Article  CAS  Google Scholar 

  • Nobel PS (2005) Physicochemical and Environmental Plant Physiology, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Osei-Bonsu I, McClain AM, Walker BJ, Sharkey TD, Kramer DM (2021) The roles of photorespiration and alternative electron acceptors in the responses of photosynthesis to elevated temperatures in cowpea. Plant Cell Environ 44(7):2290–2307

    Article  CAS  Google Scholar 

  • Oukarroum A, Schansker G, Strasser RJ (2009) Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. Physiol Plant 137(2):188–199

    Article  CAS  Google Scholar 

  • Park SY, Yu JW, Park JS, Li J, Yoo SC, Lee NY, Lee SK, Jeong SW, Seo HS, Koh HJ, Jeon JS, Park YI, Paek NC (2007) The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 19:16

    Article  Google Scholar 

  • Peoples MB, Beilharz VC, Waters SP, Simpson RJ, Dalling MJ (1980) Nitrogen redistribution during grain growth in wheat (Triticum aestivum L.). II. Chloroplast senescence and the degradation of ribulose-1,5-bisphosphate carboxylase. Planta 149:241–25149

    Article  CAS  Google Scholar 

  • Plett DC, Ranathunge K, Melino VJ, Kuya N, Uga Y, Kronzucker HJ (2020) The intersection of nitrogen nutrition and water use in plants: new paths toward improved crop productivity. J Exp Bot 71(15):4452–4468

    Article  CAS  Google Scholar 

  • Polesskaya OG, Kashirina EI, Alekhina ND (2004) Changes in the Activity of antioxidant enzymes in wheat leaves and roots as a function of nitrogen source and supply. Russ J Plant Physiol 51:615–620

    Article  CAS  Google Scholar 

  • Pollastrini M, Desotgiu R, Cascio C et al (2010) Growth and physiological responses to ozone and mild drought stress of tree species with different ecological requirements. Trees Struct Funct 24:695–704

    Article  Google Scholar 

  • Rastogi A, Zivcak M, Tripathi DK, Yadav S, Kalaji HM, Brestic M (2019) Phytotoxic effect of silver nanoparticles in Triticum aestivum: improper regulation of photosystem I activity as the reason for oxidative damage in the chloroplast. Photosynthetica 57:209–216

    Article  CAS  Google Scholar 

  • Rumeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ 30:1041–1051

    Article  CAS  Google Scholar 

  • Schansker G, Tóth SZ, Strasser RJ (2005) Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochim Biophys Acta 1706:250–261

    Article  CAS  Google Scholar 

  • Schöttler MA, Tóth SZ (2014) Photosynthetic complex stoichiometry dynamics in higher plants: environmental acclimation and photosynthetic flux control Front. Plant Sci 5:188

    Google Scholar 

  • Sejima T, Takagi D, Fukayama H, Makino A, Miyake C (2014) Repetitive short-pulse light mainly inactivates photosystem I in sunflower leaves. Plant Cell Physiol. https://doi.org/10.1093/pcp/pcu061

    Article  Google Scholar 

  • Shimakawa G, Miyake C (2018) Oxidation of P700 ensures robust photosynthesis. Front Plant Sci 9:1617. https://doi.org/10.3389/fpls.2018.01617

    Article  Google Scholar 

  • Shimakawa G, Miyake C (2019) What quantity of photosystem I is optimum for safe photosynthesis? Plant Physiol 179(4):1479–1485. https://doi.org/10.1104/pp.18.01493

    Article  CAS  Google Scholar 

  • Shimakawa G, Shaku K, Miyake C (2016) Oxidation of P700 in photosystem I is essential for the growth of cyanobacteria. Plant Physiol 172:1443–1450

    Article  CAS  Google Scholar 

  • Stirbet A, Lazár D, Kromdijk J (2018) Chlorophyll a fluorescence induction: can just a one-second measurement be used to quantify abiotic stress responses. Photosynthetica 56:86–104

    Article  CAS  Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Mohanty P, Yunus, Pathre (eds) Probing photosynthesis: mechanism, regulation and adaptation. Taylor and Francis, London, pp 443–480

  • Sun H, Shi Q, Zhang SB, Huang W (2022) The response of photosystem I to fluctuating light is influenced by leaf nitrogen content in tomato. Env Exp Bot 193:104665

    Article  CAS  Google Scholar 

  • Swoczyna T, Lata B, Stasiak A, Stefaniak J, Latocha P (2019) JIP-test in assessing sensitivity to nitrogen deficiency in two cultivars of Actinidia arguta (Siebold et Zucc) Planch. Ex Miq. Photosynthectica 57:646–658

    Article  CAS  Google Scholar 

  • Takagi D, Ishizaki K, Hanawa H, Mabuchi T, Yamamoto H, Miyake C (2017) Diversity of strategies for escaping reactive oxygen species production within photosystem I among land plants: P700 oxidation system is prerequisite for alleviating photoinhibition in photosystem I. Physiol Plant. https://doi.org/10.1111/ppl.12562

    Article  Google Scholar 

  • Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16:53–60

    Article  CAS  Google Scholar 

  • Takahashi S, Milward SE, Fan DY, Chow WS, Badger MR (2009) How does cyclic electron flow alleviate photoinhibition in Arabidopsis? Plant Physiol 149:1560–1567

    Article  CAS  Google Scholar 

  • Takashima T, Hikosaka K, Hirose T (2004) Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ 27:1047–1054

    Article  CAS  Google Scholar 

  • Tallón C, Quiles MJ (2007) Acclimation to heat and high light intensity during the development of oat leaves increases the NADP DH complex and PTOX levels in chloroplasts. Plant Sci 173:438–445

    Article  Google Scholar 

  • Tazoe Y, Noguchi K, Terashima I (2006) Effects of growth light and nitrogen nutrition on the organization of the photosynthetic apparatus in leaves of a C4 plant, Amaranthus cruentus. Plant Cell Environ 29:691–700

    Article  CAS  Google Scholar 

  • Terashima I, Funayama S, Sonoike K (1994) The site of photoinhibition in leaves of Cucumis sativus L at low temperatures is Photosystem I, not Photosystem II. Planta 193:300–306

    Article  CAS  Google Scholar 

  • Tewari RK, Kumar P, Sharma PN (2009) Oxidative stress and antioxidant responses in young leaves of mulberry plants grown under nitrogen, phosphorus or potassium deficiency. J Integr Plant Biol 49:313–322

    Article  Google Scholar 

  • Tikkanen M, Mekala NR, Aro E-M (2014) Photosystem II photoinhibition-repair cycle protects photosystem I from irreversible damage. Biochim Biophys Acta 1837:210–215

    Article  CAS  Google Scholar 

  • Valentini R, Epron D, De Angelis P, Matteucci G, Dreyer E (1995) In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q. cerris L.) leaves: diurnal cycles under different levels of water supply. Plant Cell Environ 18:631–640

    Article  CAS  Google Scholar 

  • van Bueren ET, Struik PC (2017) Diverse concepts for breeding for nitrogen use efficiency. A Review Agron Sustain Dev 37(5):50

    Article  Google Scholar 

  • Wang LJ, Loescher W, Duan W, Li WD, Yang SH, Li SH (2009) Heat acclimation induced acquired heat tolerance and cross adaptation in different grape cultivars: relationships to photosynthetic energy partitioning. Funct Plant Biol 36(6):516–526

    Article  CAS  Google Scholar 

  • Warren CR, Dreyer E, Adams MA (2003) Photosynthesis-rubisco relationships in foliage of Pinus sylvestris in response to nitrogen supply and the proposed role of rubisco and amino acids as nitrogen stores. Trees 17: 359–366

    Article  CAS  Google Scholar 

  • Xiong D, Chen J, Yu T, Gao W, Ling X, Li Y, Peng S, Huang J (2015) SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics. Sci Rep 5:1–12. https://doi.org/10.1038/srep13389

    Article  CAS  Google Scholar 

  • Yin XY, Struik PC, Romero P, Harbinson J, Evers JB, Van der putten PEL, J Vos (2009) Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C3 photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy. Plant Cell & Environment 32(5): 448–464. https://doi.org/10.1111/j.1365-3040.2009.01934.x

    Article  CAS  Google Scholar 

  • Yamori W, Nagai T, Makino A (2011) The rate-limiting step for CO2 assimilation at different temperatures is influenced by the leaf nitrogen content in several C3 crop species. Plant Cell Environ 34: 764–777

    Article  CAS  Google Scholar 

  • Yang YJ, Tan SL, Huang JL, Zhang SB, Huang W (2020) The water-water cycle facilitates photosynthetic regulation under fluctuating light in the epiphytic orchid Dendrobium officinale. Environ Exp Bot 180:104238. https://doi.org/10.1016/j.envexpbot.2020.104238

    Article  CAS  Google Scholar 

  • Zivcak M, Brestic M, Balatova Z, Drevenakova P, Olsovska K, Kalaji MH, Allakhverdiev SI (2013) Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynth Res 117:529–546

    Article  CAS  Google Scholar 

  • Zivcak M, Brestic M, Kalaji HM, Govindjee, (2014a) Photosynthetic responses of sun-and shade-grown barley leaves to high light: is the lower PSII connectivity in shade leaves associated with protection against excess of light? Photosynth Res 119:339–354

    Article  CAS  Google Scholar 

  • Zivcak M, Brestic M, Kunderlikova K, Olsovska K, Allakhverdiev SI (2015a) Effect of photosystem I inactivation on chlorophyll a fluorescence induction in wheat leaves: does activity of photosystem I play any role in OJIP rise? J Photochem Photobiol B 152:318–324

    Article  CAS  Google Scholar 

  • Zivcak M, Brestic M, Kunderlikova K, Sytar O, Allakhverdiev SI (2015b) Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves. Photosynth Res 126:449–463

    Article  CAS  Google Scholar 

  • Zivcak M, Kalaji MH, Shao HB, Olsovska K, Brestic M (2014b) Photosynthetic proton and electron transport in wheat leaves under prolonged moderate drought stress. J Photochem Photobiol B Biol. https://doi.org/10.1016/j.jphotobiol.2014.01.007

    Article  Google Scholar 

  • Zivcak M, Olsovska K, Slamka P, Galambosova J, Rataj V, Shao HB, Brestic M (2014c) Application of chlorophyll fluorescence performance indices to assess the wheat photosynthetic functions influenced by nitrogen deficiency. Plant Soil Environ 60:210–215

    Article  CAS  Google Scholar 

  • Živcak M, Olsovska K, Slamka P, Galambosova J, Rataj V, Shao HB, Kalaji HM, Brestic M (2014) Measurements of chlorophyll fluorescence in different leaf positions may detect nitrogen deficiency in wheat. Zemdirbyste 101:437–444

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Ministry of Education, Science, Research and Sport of the Slovak Republic under the project VEGA 1-0683-20, and the Slovak Research and Development Agency project APVV-18-465 and APVV-SK-CN-21-0045.

Funding

Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR, VEGA 1-0683-20, Marek Zivcak,Agentúra na Podporu Výskumu a Vývoja, APVV-18-465, Marian Brestic, APVV-SK-CN-21-0045, Marian Brestic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Zivcak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filacek, A., Zivcak, M., Barboricova, M. et al. Diversity of responses to nitrogen deficiency in distinct wheat genotypes reveals the role of alternative electron flows in photoprotection. Photosynth Res 154, 259–276 (2022). https://doi.org/10.1007/s11120-022-00966-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-022-00966-z

Keywords

Navigation