Aigner H, Wilson RH, Bracher A, Calisse L, Bhat JY, Hartl FU, Hayer-Hartl M (2017) Plant RuBisCo assembly in E. coli with five chloroplast chaperones including BSD2. Science 358:1272–1278. https://doi.org/10.1126/science.aap9221
CAS
Article
PubMed
Google Scholar
Borrill P, Ramirez-Gonzalez R, Uauy C (2016) expVIP: a customizable RNA-seq data analysis and visualization platform. Plant Physiol 170:2172–2186. https://doi.org/10.1104/pp.15.01667
CAS
Article
PubMed
PubMed Central
Google Scholar
Borrill P, Harrington SA, Simmonds J, Uauy C (2019) Identification of transcription factors regulating senescence in wheat through gene regulatory network modelling. Plant Physiol 180:1740–1755. https://doi.org/10.1104/pp.19.00380
CAS
Article
PubMed
PubMed Central
Google Scholar
Bracher A, Whitney SM, Hartl FU, Hayer-Hartl M (2017) Biogenesis and metabolic maintenance of Rubisco. Ann Rev Plant Biol 68:29–60. https://doi.org/10.1146/annurev-arplant-043015-111633
CAS
Article
Google Scholar
Carmo-Silva E, Scales JC, Madgwick PJ, Parry MAJ (2015) Optimizing Rubisco and its regulation for greater resource use efficiency. Plant Cell Environ 38:1817–1832. https://doi.org/10.1111/pce.12425
CAS
Article
PubMed
Google Scholar
Clavijo BJ, Venturini L, Schudoma C, Accinelli GG, Kaithakottil G, Wright J, Borrill P, Kettleborough G, Heavens D, Chapman H, Lipscombe J, Barker T, Lu F-H, McKenzie N, Raats D, Ramirez-Gonzalez RH, Coince A, Peel N, Percival-Alwyn L, Clark MD (2017) An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res 27:885–896. https://doi.org/10.1101/gr.217117.116
CAS
Article
PubMed
PubMed Central
Google Scholar
Conlan B, Birch R, Kelso C, Holland S, De Souza AP, Long SP, Beck JL, Whitney SM (2019) BSD2 is a Rubisco-specific assembly chaperone, forms intermediary hetero-oligomeric complexes, and is nonlimiting to growth in tobacco. Plant, Cell Environ 42:1287–1301. https://doi.org/10.1111/pce.13473
CAS
Article
Google Scholar
Cui Y, Chen X, Luo H, Fan Z, Luo J, He S, Yue H, Zhang P, Chen R (2016) BioCircos.js: an interactive Circos JavaScript library for biological data visualization on web applications. Bioinformatics 32:1740–1742. https://doi.org/10.1093/bioinformatics/btw041
CAS
Article
PubMed
Google Scholar
Degen GE, Worrall D, Carmo-Silva E (2020) An isoleucine residue acts as a thermal and regulatory switch in wheat Rubisco activase. Plant J 103:742–751. https://doi.org/10.1111/tpj.14766
CAS
Article
PubMed
Google Scholar
Degen GE, Orr DJ, Carmo-Silva E (2021) Heat-induced changes in the abundance of wheat Rubisco activase isoforms. New Phytol 229:1298–1311. https://doi.org/10.1111/nph.16937
CAS
Article
PubMed
Google Scholar
Erb TJ, Zarzycki J (2018) A short history of RubisCO: the rise and fall (?) of nature’s predominant CO2 fixing enzyme. Curr Opin Biotechnol 49:100–107. https://doi.org/10.1016/j.copbio.2017.07.017
CAS
Article
PubMed
Google Scholar
Feiz L, Williams-Carrier R, Wostrikoff K, Belcher S, Barkan A, Stern DB (2012) Ribulose-1,5-bis-phosphate carboxylase/oxygenase accumulation factor1 is required for holoenzyme assembly in maize. Plant Cell 24:3435–3446. https://doi.org/10.1105/tpc.112.102012
CAS
Article
PubMed
PubMed Central
Google Scholar
Feiz L, Williams-Carrier R, Belcher S, Montano M, Barkan A, Stern DB (2014) A protein with an inactive pterin-4a-carbinolamine dehydratase domain is required for Rubisco biogenesis in plants. Plant J 80:862–869. https://doi.org/10.1111/tpj.12686
CAS
Article
PubMed
Google Scholar
Feldman M, Levy AA (2012) Genome evolution due to allopolyploidization in wheat. Genetics 192:763–774. https://doi.org/10.1534/genetics.112.146316
CAS
Article
PubMed
PubMed Central
Google Scholar
Feldman M, Levy AA, Fahima T, Korol A (2012) Genomic asymmetry in allopolyploid plants: wheat as a model. J Exp Bot 63:5045–5059. https://doi.org/10.1093/jxb/ers192
CAS
Article
PubMed
Google Scholar
Glover NM, Redestig H, Dessimoz C (2016) Homoeologs: what are they and how do we infer them? Trends Plant Sci 21:609–621. https://doi.org/10.1016/j.tplants.2016.02.005
CAS
Article
PubMed
PubMed Central
Google Scholar
Hamilton NE, Ferry M (2018) ggtern: ternary diagrams using ggplot2. J Stat Softw 87:1–17. https://doi.org/10.18637/jss.v087.c03
Article
Google Scholar
Hauser T, Bhat JY, Miličić G, Wendler P, Hartl FU, Bracher A, Hayer-Hartl M (2015) Structure and mechanism of the Rubisco-assembly chaperone Raf1. Nat Struct Mol Biol 22:720–728. https://doi.org/10.1038/nsmb.3062
CAS
Article
PubMed
Google Scholar
Hayer-Hartl M, Hartl FU (2020) Chaperone machineries of Rubisco: the most abundant enzyme. Trends Biochem Sci 45:748–763. https://doi.org/10.1016/j.tibs.2020.05.001
CAS
Article
PubMed
Google Scholar
Howe KL, Contreras-Moreira B, De Silva N, Maslen G, Akanni W, Allen J, Alvarez-Jarreta J, Barba M, Bolser DM, Cambell L, Carbajo M, Chakiachvili M, Christensen M, Cummins C, Cuzick A, Davis P, Fexova S, Gall A, George N, Flicek P (2020) Ensembl genomes 2020-enabling non-vertebrate genomic research. Nucleic Acids Res 48:D689–D695. https://doi.org/10.1093/nar/gkz890
CAS
Article
PubMed
Google Scholar
Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99:8133–8138. https://doi.org/10.1073/pnas.072223799
CAS
Article
PubMed
PubMed Central
Google Scholar
Jung HS, Crisp PA, Estavillo GM, Cole B, Hong F, Mockler TC, Pogson BJ, Chory J (2013) Subset of heat-shock transcription factors required for the early response of Arabidopsis to excess light. Proc Natl Acad Sci USA 110:14474–14479. https://doi.org/10.1073/pnas.1311632110
Article
PubMed
PubMed Central
Google Scholar
Krasileva KV, Buffalo V, Bailey P, Pearce S, Ayling S, Tabbita F, Soria M, Wang S, Akhunov E, Uauy C, Dubcovsky J, IWGS Consortium (2013) Separating homeologs by phasing in the tetraploid wheat transcriptome. Genome Biol 14:R66. https://doi.org/10.1186/gb-2013-14-6-r66
CAS
Article
Google Scholar
Krasileva KV, Vasquez-Gross HA, Howell T, Bailey P, Paraiso F, Clissold L, Simmonds J, Ramirez-Gonzalez RH, Wang X, Borrill P, Fosker C, Ayling S, Phillips AL, Uauy C, Dubcovsky J (2017) Uncovering hidden variation in polyploid wheat. Proc Natl Acad Sci USA 114:E913–E921. https://doi.org/10.1073/pnas.1619268114
CAS
Article
PubMed
PubMed Central
Google Scholar
Lin MT, Stone WD, Chaudhari V, Hanson MR (2020) Small subunits can determine enzyme kinetics of tobacco Rubisco expressed in Escherichia coli. Nat Plants 6:1289–1299. https://doi.org/10.1038/s41477-020-00761-5
CAS
Article
PubMed
Google Scholar
Liu Z, Xin M, Qin J, Peng H, Ni Z, Yao Y, Sun Q (2015) Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.). BMC Plant Biol 15:152. https://doi.org/10.1186/s12870-015-0511-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Lobo AKM, Orr DJ, Gutierrez MO, Andralojc PJ, Sparks C, Parry MAJ, Carmo-Silva E (2019) Overexpression of ca1pase decreases Rubisco abundance and grain yield in wheat. Plant Physiol 181:471–479. https://doi.org/10.1104/pp.19.00693
CAS
Article
PubMed
PubMed Central
Google Scholar
Martín AC, Borrill P, Higgins J, Alabdullah A, Ramírez-González RH, Swarbreck D, Uauy C, Shaw P, Moore G (2018) Genome-wide transcription during early wheat meiosis is independent of synapsis, ploidy level, and the Ph1 locus. Front Plant Sci 9:1791. https://doi.org/10.3389/fpls.2018.01791
Article
PubMed
PubMed Central
Google Scholar
Martinez-Perez E, Shaw P, Moore G (2001) The Ph1 locus is needed to ensure specific somatic and meiotic centromere association. Nature 411:204–207. https://doi.org/10.1038/35075597
CAS
Article
PubMed
Google Scholar
Morita K, Hatanaka T, Misoo S, Fukayama H (2016) Identification and expression analysis of non-photosynthetic Rubisco small subunit, OsRbcS1-like genes in plants. Plant Gene 8:26–31. https://doi.org/10.1016/j.plgene.2016.09.004
CAS
Article
Google Scholar
Parry MAJ (2003) Manipulation of Rubisco: the amount, activity, function and regulation. J Exp Bot 54:1321–1333. https://doi.org/10.1093/jxb/erg141
CAS
Article
PubMed
Google Scholar
Parry MAJ, Keys AJ, Madgwick PJ, Carmo-Silva E, Andralojc PJ (2008) Rubisco regulation: a role for inhibitors. J Exp Bot 59:1569–1580. https://doi.org/10.1093/jxb/ern084
CAS
Article
PubMed
Google Scholar
Ramírez-González RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, Davey M, Jacobs J, van EF, Pasha A, Khedikar Y, Robinson SJ, Cory AT, Florio T, Concia L, Juery C, Schoonbeek H, Steuernagel B, Xiang D, Uauy C (2018) The transcriptional landscape of polyploid wheat. Science 361:6089. https://doi.org/10.1126/science.aar6089
CAS
Article
Google Scholar
Saschenbrecker S, Bracher A, Rao KV, Rao BV, Hartl FU, Hayer-Hartl M (2007) Structure and function of RbcX, an assembly chaperone for hexadecameric rubisco. Cell 129:1189–1200. https://doi.org/10.1016/j.cell.2007.04.025
CAS
Article
PubMed
Google Scholar
Scafaro AP, Bautsoens N, den Boer B, Van Rie J, Gallé A (2019) A conserved sequence from heat-adapted species improves Rubisco activase thermostability in wheat. Plant Physiol 181:43–54. https://doi.org/10.1104/pp.19.00425
CAS
Article
PubMed
PubMed Central
Google Scholar
Sharwood RE (2017) Engineering chloroplasts to improve Rubisco catalysis: prospects for translating improvements into food and fiber crops. New Phytol 213:494–510. https://doi.org/10.1111/nph.14351
CAS
Article
PubMed
Google Scholar
Suzuki Y, Makino A (2012) Availability of Rubisco small subunit up-regulates the transcript levels of large subunit for stoichiometric assembly of its holoenzyme in rice. Plant Physiol 160:533–540. https://doi.org/10.1104/pp.112.201459
CAS
Article
PubMed
PubMed Central
Google Scholar
The International Wheat Genome Sequencing Consortium (IWGSC) (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. https://doi.org/10.1126/science.1251788
Article
Google Scholar
The International Wheat Genome Sequencing Consortium (IWGSC) (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:7191. https://doi.org/10.1126/science.aar7191
CAS
Article
Google Scholar
Vitlin Gruber A, Feiz L (2018) Rubisco assembly in the chloroplast. Front Mol Biosci 5:24. https://doi.org/10.3389/fmolb.2018.00024
CAS
Article
PubMed
PubMed Central
Google Scholar
Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Yutani H (2019) Welcome to the tidyverse. J Open Source Softw 4:1686. https://doi.org/10.21105/joss.01686
Article
Google Scholar
Wostrikoff K, Stern D (2007) Rubisco large-subunit translation is autoregulated in response to its assembly state in tobacco chloroplasts. Proc Natl Acad Sci USA 104:6466–6471. https://doi.org/10.1073/pnas.0610586104
CAS
Article
PubMed
PubMed Central
Google Scholar
Yamada K, Davydov II, Besnard G, Salamin N (2019) Duplication history and molecular evolution of the rbcS multigene family in angiosperms. J Exp Bot 70:6127–6139. https://doi.org/10.1093/jxb/erz363
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang M, Gao Y, Zhang Y, Fischer T, Zhao Z, Zhou X, Wang Z, Wang E (2020) The contribution of spike photosynthesis to wheat yield needs to be considered in process-based crop models. Field Crop Res 257:107931. https://doi.org/10.1016/j.fcr.2020.107931
Article
Google Scholar
Zhao Q, Liu C (2018) Chloroplast chaperonin: an intricate protein folding machine for photosynthesis. Front Mol Biosci 4:98. https://doi.org/10.3389/fmolb.2017.00098
CAS
Article
PubMed
PubMed Central
Google Scholar