Skip to main content
Log in

Dynamics of diverse coherences in primary charge separation of bacterial reaction center at 77 K revealed by wavelet analysis

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

To uncover the mechanism behind the high photo-electronic conversion efficiency in natural photosynthetic complexes it is essential to trace the dynamics of electronic and vibrational quantum coherences. Here we apply wavelet analysis to two-dimensional electronic spectroscopy data for three purple bacterial reaction centers with mutations that produce drastically different rates of primary charge separation. From the frequency distribution and dynamic evolution features of the quantum beating, electronic coherence with a dephasing lifetime of ~50 fs, vibronic coherence with a lifetime of ~150 fs and vibrational/vibronic coherences with a lifetime of 450 fs are distinguished. We find that they are responsible for, or couple to, different specific steps during the primary charge separation process, i.e., intradimer charge transfer inside the special bacteriochlorophyll pair followed by its relaxation and stabilization of the charge-transfer state. The results enlighten our understanding of how quantum coherences participate in, and contribute to, a biological electron transfer reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anna JM, Scholes GD, van Grondelle R (2014) A little coherence in photosynthetic light harvesting. Bioscience 64:14–25

    Article  Google Scholar 

  • Brederode MEV, Jones MR (2000) Reaction centers of purple bacteria. Subcellular Biochemistry, 35: Enzyme-Catalyzed Electron and Radical Transfer, Kluwer Academic I Plenum Publishers, New York, pp. 621–676

  • Chenu A, Scholes GD (2015) Coherence in energy transfer and photosynthesis. Annu Rev Phys Chem 66:69–96

    Article  CAS  PubMed  Google Scholar 

  • Duan H, Prokhorenko VI, Cogdell RJ, Ashraf K, Stevens AL, Thorwart M, Miller RJD (2017) Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer. Proc Natl Acad Sci USA 114:8493–8498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenmayer TJ, de Groot HJ, van de Wetering E, Neugebauer J, Buda F (2012) Mechanism and reaction coordinate of directional charge separation in bacterial reaction centers. J Phys Chem Lett 3(6):694–697. https://doi.org/10.1021/jz201695p

    Article  CAS  PubMed  Google Scholar 

  • Eisenmayer TJ, Lasave JA, Monti A, Groot HJMd, Buda F (2013) Proton displacements coupled to primary electron transfer in the Rhodobacter sphaeroides reaction center. J Phys Chem B 117:11162–11168

    Article  CAS  PubMed  Google Scholar 

  • Engel GS, Calhoun TR, Read EL, Ahn T, Mančal T, Cheng Y, Blankenship RE, Fleming GR (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446:782–786

    Article  CAS  PubMed  Google Scholar 

  • Feher G, Allen JP, Okamura MY, Rees DC (1989) Structure and function of bacterial photosynthetic reaction centers. Nature 339:111–116

    Article  CAS  Google Scholar 

  • Flanagan ML, Long PD, Dahlberg PD, Rolczynski BS, Massey SC, Engel GS (2016) Mutations to R. Sphaeroides reaction center perturb energy levels and vibronic coupling but not observed energy transfer rates. J Phys Chem A 120(9):1479–1487

    Article  CAS  PubMed  Google Scholar 

  • Fuller FD, Pan J, Gelzinis A, Butkus V, Senlik SS, Wilcox DE, Yocum CF, Valkunas L, Abramavicius D, Ogilvie JP (2014) Vibronic coherence in oxygenic photosynthesis. Nat Chem 6:706–711

    Article  CAS  PubMed  Google Scholar 

  • Gelin MF, Borrelli R, Domcke W (2019) Origin of unexpectedly simple oscillatory responses in the excited-state dynamics of disordered molecular aggregates. J Phys Chem Lett 10:2806–2810

    Article  CAS  PubMed  Google Scholar 

  • Heathcote P, Jones MR (2012) The structure-function relationships of photosynthetic reaction centers. Comprehensive Biophysics, Academic Press, Oxford, UK:115–144

  • Irgen-Gioro S, Gururangan K, Saer RG, Blankenship RE, Harel E (2019) Electronic coherence lifetimes of the Fenna-Matthews-Olson complex and light harvesting complex II. Chem Sci 10:10503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivashin NV, Shchupak EE (2012) Mechanism by which a single water molecule affects primary charge separation kinetics in a bacterial photosynthetic reaction center of Rhodobacter sphaeroides. Opt Spectrosc 113:474–486

    Article  CAS  Google Scholar 

  • Jordanides XJ, Scholes GD, Fleming GR (2001) The mechanism of energy transfer in the bacterial photosynthetic reaction center. J Phys Chem B 105:1652–1669

    Article  CAS  Google Scholar 

  • Knox RS (1996) Electronic excitation transfer in the photosynthetic unit: reflections on work of William Arnold. Photosynth Res 48:35–39

    Article  CAS  PubMed  Google Scholar 

  • Ma F, Romero E, Jones MR, Novoderezhkin VI, van Grondelle R (2018) Vibronic coherence in the charge separation process of the Rhodobacter sphaeroides reaction center. J Phys Chem Lett 9:1827–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma F, Romero E, Jones MR, Novoderezhkin VI, van Grondelle R (2019) Both electronic and vibrational coherences are involved in primary electron transfer in bacterial reaction center. Nat Commun 10:933

    Article  PubMed  PubMed Central  Google Scholar 

  • McAuley KE, Fyfe PK, Ridge JP, Isaacs NW, Cogdell RJ, Jones MR (1999) Structural details of an interaction between cardiolipin and an integral membrane protein. Proc Natl Acad Sci USA 96:14706–14711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAuley KE, Fyfe PK, Cogdell RJ, Isaacs NW, Jones MR (2000) X-ray crystal structure of the YM210W mutant reaction centre from Rhodobacter sphaeroides. FEBS Lett 467:285–290

    Article  CAS  PubMed  Google Scholar 

  • Meneghin E, Volpato A, Cupellini L, Bolzonello L, Jurinovich S, Mascoli V, Carbonera D, Mennucci B, Collini E (2018) Coherence in carotenoid-to-chlorophyll energy transfer. Nat Commun 9:3160

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore LJ, Zhou H, Boxer SG (1999) Excited-state electronic asymmetry of the special pair in photosynthetic reaction center mutants: absorption and Stark spectroscopy. Biochemistry-US 38:11949–11960

    Article  CAS  Google Scholar 

  • Niedringhaus A, Policht VR, Sechrist R, Konar A, Laible PD, Bocian DF, Holten D, Kirmaier C, Ogilvie JP (2018) Primary processes in the bacterial reaction center probed by two-dimensional electronic spectroscopy. Proc Natl Acad Sci USA 115:3563–3568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novoderezhkin VI, Yakovlev AG, van Grondelle R, Shuvalov VA (2004) Coherent nuclear and electronic dynamics in primary charge separation in photosynthetic reaction centers: a Redfield theory approach. J Phys Chem B 108:7445–7457

    Article  CAS  Google Scholar 

  • Novoderezhkin VI, Romero E, van Grondelle R (2015) How exciton-vibrational coherences control charge separation in the photosystem II reaction center. Phys Chem Chem Phys 17:30828–30847

    Article  CAS  PubMed  Google Scholar 

  • Novoderezhkin VI, Romero E, Prior J, van Grondelle R (2017) Exciton-vibrational resonance and dynamics of charge separation in the photosystem II reaction center. Phys Chem Chem Phys 19:5195–5208

    Article  CAS  PubMed  Google Scholar 

  • Paleček D, Edlund P, Westenhoff S, Zigmantas D (2017) Quantum coherence as a witness of vibronically hot energy transfer in bacterial reaction center. Sci Adv 3:e1603141

    Article  PubMed  PubMed Central  Google Scholar 

  • Parson WW, Warsher A (2008) Mechanism of charge separation in purple bacterial reaction centers. Advances in Photosynthesis and Respiration, 28: The Purple Phototrophic Bacteria, Springer publisher, The Netherlands, pp. 355–377

  • Potter JA, Fyfe PK, Frolov D, Wakeham MC, Rv G, Robert B, Jones MR (2005) Strong effects of an individual water molecule on the rate of light-driven charge aeparation in the Rhodobacter sphaeroides reaction center. J Biol Chem 280:27155–27164

    Article  CAS  PubMed  Google Scholar 

  • Prior J, Castro E, Chin AW, Almeida J, Huelga SF, Plenio MB (2013) Time-frequency resolved ultrafast spectroscopy techniques using wavelet analysis. J Chem Phys 139:224103

    Article  PubMed  Google Scholar 

  • Romero E, Ramunas A, Novoderezhkin VI, Ferretti M, Thieme J, Zigmantas D, van Grondelle R (2014) Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat Phys 10:676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero E, Novoderezhkin VI, van Grondelle R (2017a) Quantum design of photosynthesis for bio-inspired solar-energy conversion. Nature 543:355–365

    Article  CAS  PubMed  Google Scholar 

  • Romero E, Prior J, Chin AW, Morgan SE, Novoderezhkin VI, Plenio MB, van Grondelle R (2017b) Quantum-coherent dynamics in photosynthetic charge separation revealed by wavelet analysis. Sci Rep 7:2890

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryu IS, Dong H, Fleming GR (2014) Role of electronic-vibrational mixing in enhancing vibrational coherences in the ground electronic states of photosynthetic bacterial reaction center. J Phys Chem B 118:1381–1388

    Article  CAS  PubMed  Google Scholar 

  • Thyrhaug E, Tempelaar R, Alcocer MJP, Žídek K, Bína D, Knoester J, Jansen TLC, Zigmantas D (2018) Identification and characterization of diverse coherences in the Fenna-Matthews-Olson complex. Nat Chem 10:780–786

    Article  CAS  PubMed  Google Scholar 

  • Tihana M, Ostroumov EE, Anna JM, van Grondelle R, Govindjee SGD (2017) Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem Rev 117:249–293

    Article  Google Scholar 

  • Volpato A, Collini E (2015) Time-frequency methods for coherent spectroscopy. Opt Express 23:20040–20050

    Article  CAS  PubMed  Google Scholar 

  • Vos MH, Rappaport F, Lambry JC, Breton J, Martin JL (1993) Visualization of coherent nuclear motion in a membrane protein by femtosecond spectroscopy. Nature 363:320–325

    Article  CAS  Google Scholar 

  • Wang L, Allodi MA, Engel GS (2019) Quantum coherences reveal excitedstate dynamics in biophysical systems. Nat Rev Chem 3:477–490

    Article  Google Scholar 

  • Wörner HJ, Arrell CA, Banerji N, Cannizzo A, Chergui M, Das AK, Hamm P, Keller U, Kraus PM, Liberatore E, Lopez-Tarifa P, Lucchini M, Meuwly M, Milne C, Moser J, Rothlisberger U, Smolentsev G, Teuscher J, Bokhoven JAV (2017) Charge migration and charge transfer in molecular systems. Struct Dynam 4:061508

    Article  Google Scholar 

Download references

Funding

This work has been supported by the National Key Research and Development Program of China (No. 2019YFA0904600), the Natural Science Foundation of China (No. 21903086) to F. M., the Advanced Investigator Grant from the European Research Council (No. 267333, PHOTPROT) to R. v. G, the Biotechnology and Biological Sciences Research Council of the UK (Project BB/I022570/1) to M. R. J. and the Russian Foundation for Basic Research (No. 18-04-00105) to V. N.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Ma or Long-Jiang Yu.

Ethics declarations

Conflict of interest

The authors wish to declare no known competing financial interests or personal relationships that have influenced the present work.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 169 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, F., Romero, E., Jones, M.R. et al. Dynamics of diverse coherences in primary charge separation of bacterial reaction center at 77 K revealed by wavelet analysis. Photosynth Res 151, 225–234 (2022). https://doi.org/10.1007/s11120-021-00881-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-021-00881-9

Keywords

Navigation