Skip to main content
Log in

Electronic excitation transfer in the photosynthetic unit: Reflections on work of William Arnold

  • Reflection
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Among his many contributions to photosynthesis, William Arnold made critical suggestions about the mechanism of the initial stages of excitation energy transfer and its measurement. Thus he helped found not only the general concept of the photosynthetic unit but also the key idea behind the detailed functional aspects of its ‘chlorophyll antenna’. We review the development of these ideas and the modern form in which they have emerged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

Pc:

phycocyanin

PSU:

photosynthetic unit

RC:

reaction center

References

  • Arnold W (1991) Experiments. Photosynth Res 27: 73–82

    Google Scholar 

  • Arnold W and Meek ES (1956) The polarization of fluorescence and energy transfer in grana. Arch Biochem Biophys 60: 82–90

    PubMed  Google Scholar 

  • Arnold W and Oppenheimer JR (1950) Internal conversion in the photosynthetic mechanism of blue-green algae. J Gen Physiol 33: 423–435

    Article  PubMed  Google Scholar 

  • Bay Z and Pearlstein RM (1963) A theory of energy transfer in the photosynthetic unit. Proc Natl Acad Sci USA 50: 1071–1078

    PubMed  Google Scholar 

  • Cario G and Franck J (1923) Über sensibilisierte Fluoreszenz von Gasen. Z Physik 17: 202–212

    Google Scholar 

  • Davydov AS (1948) Theory of absorption spectra of molecular crystals (in Russian). Zh Eksp Teor Fiz 18: 210–218.

    Google Scholar 

  • Davydov AS (1962) Theory of Molecular Excitons. (Translated from the first Russian edition by M. Kasha and M. Oppenheimer Jr.) McGraw-Hill Book Co., New York

    Google Scholar 

  • Du M, Xie X, Mets L and Fleming GR (1994) Direct observation of ultrafast energy transfer processes in light harvesting complex II. J Phys Chem 98: 4736–4741

    Google Scholar 

  • Duysens LNM (1952) Transfer of excitation energy in photosynthesis. PhD thesis, University of Utrecht, The Netherlands.

    Google Scholar 

  • Duysens LNM (1964) Photosynthesis. Progr Biophys Mol Biol 14: 1–104

    Google Scholar 

  • Emerson R and Arnold W (1932a) A separation of the reactions in photosynthesis by means of intermittent light. J Gen Physiol 15: 391–420

    Article  Google Scholar 

  • Emerson R and Arnold W (1932b) The photochemical reaction in photosynthesis. J Gen Physiol 16: 191–205

    Article  Google Scholar 

  • Förster Th (1946) Energiewanderung und Fluoreszenz. Naturwissenschaften 33: 166–175

    Google Scholar 

  • Förster Th (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Physik [6] 2: 55–75

    Google Scholar 

  • Förster Th (1960) Excitation transfer. In: Kirby-Smith JS and Magee JL (eds) Comparative Effects of Radiation, Ch 13, pp 300–319. Wiley, New York.

    Google Scholar 

  • Förster Th (1965) Delocalized excitation and excitation transfer. In: Sinanoglu O (ed) Part II.B.1 of Modern Quantum Chemistry: Istanbul Lectures. Part III, Action of Light and Organic Crystals. pp 93–137, Academic Press, New York.

    Google Scholar 

  • Franck J and Herzfeld KF (1941) Contribution to a theory of photosynthesis. J Phys Chem 45: 978–1009

    Google Scholar 

  • Franck J and Teller E (1938) Migration and photochemical action of excitation energy in crystals. J Chem Phys 6: 861–872

    Google Scholar 

  • Frenkel J (1931) On the transformation of light into heat in solids. I, II, Phys Rev 37: 17–44, 1276–1294

    Article  Google Scholar 

  • Frenkel J (1936) On the absorption of light and the trapping of electrons and positive holes in crystalline dielectrics. Phys Z Sowjet 9: 158–186

    Google Scholar 

  • Gaffron H and Wohl K (1936a,b) Zur theorie der Assimilation. Naturwissenschaften 24: 81–90; 103–107

    Google Scholar 

  • Gaviola E and Pringsheim P (1924) Über den Einfluss der Konzentration auf die Polarisation der Fluoreszenz von Farbstofflosungen. Z Physik 24: 24–36

    Google Scholar 

  • Kenkre VM and Knox RS (1974a) Generalized-master-equation theory of excitation transfer. Physical Rev B 9: 5279–5290

    Article  Google Scholar 

  • Kenkre VM and Knox RS (1974b) Theory of fast and slow excitation transfer rates. Physical Rev Lett 33: 803–806

    Article  Google Scholar 

  • Knox RS (1968) Theory of polarization quenching by excitation transfer. Physica 39: 361–386

    Article  Google Scholar 

  • Knox RS and Gülen D (1993) Theory of polarized fluorescence from molecular pairs: Förster transfer at large electronic coupling. Photochem Photobiol 57: 40–43

    Google Scholar 

  • Lu X and Pearlstein RM (1993) Simulations of Prosthecochloris bacteriochlorophyll-a protein optical spectra improved by parametric computer search. Photochem Photobiol 57: 86–91

    Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517–521

    Article  Google Scholar 

  • McRae EG and Kasha M (1958) Enhancement of phosphorescence ability upon aggregation of dye molecules. J Chem Phys 28: 721–722

    Google Scholar 

  • Myers J (1994) The 1932 experiments. Photosynth Res 40: 303–310

    Article  Google Scholar 

  • Oppenheimer J R (1941) Internal conversion in photosynthesis. Phys Rev 60: 158 (Abstract)

    Article  Google Scholar 

  • Pearlstein RM (1966) Migration and trapping of excitation quanta in photosynthetic units. PhD thesis, University of Maryland

  • Perrin F (1932) Théorie quantique des transferts d'activation entre molecules de même espéce. Cas des solutions fluorescents. Ann Physique 17: 283–317

    Google Scholar 

  • Rahman TS, Knox RS and Kenkre VM (1979) Theory of depolarization of fluorescence in molecular pairs. Chem Phys 44: 197–211. Erratum: Chem Phys 47: 418 (1980)

    Article  Google Scholar 

  • Robinson GW (1967) Excitation transfer and trapping in photosynthesis. Brookhaven Symposium in Biology, No 19, pp 16–48. Brookhaven National Laboratory, Upton, New York.

    Google Scholar 

  • Savikhin S, van Noort PI, Zhu Y, Lin S, Blankenship RE, and Struve WS (1995) Ultrafast energy transfer in light-harvesting chlorosomes from the green sulfur bacterium Chlorobium tepidum. Chem Phys 194: 245–258

    Article  PubMed  Google Scholar 

  • Simpson WT and Peterson DL (1957) Coupling strength for resonance transfer of electronic excitation energy in van der Waals solids. J Chem Phys 26: 588–593

    Google Scholar 

  • Struve WS (1995) Theory of electronic energy transfer. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 297–313. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • van Grondelle R, Dekker JP, Gillbro T and Sundström V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta 1187: 1–65

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knox, R.S. Electronic excitation transfer in the photosynthetic unit: Reflections on work of William Arnold. Photosynth Res 48, 35–39 (1996). https://doi.org/10.1007/BF00040993

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00040993

Key words

Navigation