Skip to main content
Log in

Natural variation in the fast phase of chlorophyll a fluorescence induction curve (OJIP) in a global rice minicore panel

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Photosynthesis can be probed through Chlorophyll a fluorescence induction (FI), which provides detailed insight into the electron transfer process in Photosystem II, and beyond. Here, we have systematically studied the natural variation of the fast phase of the FI, i.e. the OJIP phase, in rice. The OJIP phase of the Chl a fluorescence induction curve is referred to as “fast transient” lasting for less than a second; it is obtained after a dark-adapted sample is exposed to saturating light. In the OJIP curve, “O” stands for “origin” (minimal fluorescence), “P” for “peak” (maximum fluorescence), and J and I for inflection points between the O and P levels. Further, Fo is the fluorescence intensity at the “O” level, whereas Fm is the intensity at the P level, and Fv (= FmFo) is the variable fluorescence. We surveyed a set of quantitative parameters derived from the FI curves of 199 rice accessions, grown under both field condition (FC) and growth room condition (GC). Our results show a significant variation between Japonica (JAP) and Indica (IND) subgroups, under both the growth conditions, in almost all the parameters derived from the OJIP curves. The ratio of the variable to the maximum (Fv/Fm) and of the variable to the minimum (Fv/Fo) fluorescence, the performance index (PIabs), as well as the amplitude of the I–P phase (AI–P) show higher values in JAP compared to that in the IND subpopulation. In contrast, the amplitude of the O–J phase (AO–J) and the normalized area above the OJIP curve (Sm) show an opposite trend. The performed genetic analysis shows that plants grown under GC appear much more affected by environmental factors than those grown in the field. We further conducted a genome-wide association study (GWAS) using 11 parameters derived from plants grown in the field. In total, 596 non-unique significant loci based on these parameters were identified by GWAS. Several photosynthesis-related proteins were identified to be associated with different OJIP parameters. We found that traits with high correlation are usually associated with similar genomic regions. Specifically, the thermal phase of FI, which includes the amplitudes of the J–I and I–P subphases (AJ–I and AI–P) of the OJIP curve, is, in turn, associated with certain common genomic regions. Our study is the first one dealing with the natural variations in rice, with the aim to characterize potential candidate genes controlling the magnitude and half-time of each of the phases in the OJIP FI curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

βGlu-5:

Oryza sativa 1 β-Glucosidase 5

Chl:

Chlorophyll

FI :

(Chlorophyll a) fluorescence induction

F o :

Basal (initial, minimal) level of chlorophyll a fluorescence

F m :

Maximal level of chlorophyll a fluorescence

F v :

Variable chlorophyll a fluorescence, calculated as Fv = FmFo

FC :

Field condition

GC:

Growth room condition

GWAS:

Genome-wide association study

LED:

Light emitting diode

OJIP transient:

Fast phase of chlorophyll a fluorescence induction, where O is for Fo, P is for peak (equivalent to Fm in saturating light), J and I are for inflections between O and P

RMCP:

Rice minicore panel

QA :

The first quinone electron acceptor of Photosystem II (it is a one-electron acceptor)

QB :

The second quinone electron acceptor of Photosystem II (it is a two-electron acceptor)

PQ:

(Mobile) plastoquinone

PS:

Photosystem

SNP:

Single-nucleotide polymorphism

References

  • Ackerly DD, Dudley SA, Sultan SE, Schmitt J, Coleman JS, Linder CR, Sandquist DR, Geber MA, Evans AS, Dawson T, Lechowicz ML (2000) The evolution of plant ecophysiological traits: recent advances and future directions. Bioscience 50:979–995

    Google Scholar 

  • Agrama HA, Yan W, Jia M, Fjellstrom R, McClung AM (2010) Genetic structure associated with diversity and geographic distribution in the USDA rice world collection. Nat Sci 2:247–291

    Google Scholar 

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550

    CAS  PubMed  Google Scholar 

  • Anderson JM (1986) Photoregulation of the composition, function, and structure of thylakoid membranes. Annu Rev Plant Biol 37:93–136

    CAS  Google Scholar 

  • Bennoun P (2001) Chlororespiration and the process of carotenoid biosynthesis. Biochim Biophys Acta 1506:133–142

    CAS  PubMed  Google Scholar 

  • Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489

    PubMed  Google Scholar 

  • Boisvert S, Joly D, Carpentier R (2006) Quantitative analysis of the experimental O-J–I–P chlorophyll fluorescence induction kinetics: apparent activation energy and origin of each kinetic step. FEBS J 273:4770–4777

    CAS  PubMed  Google Scholar 

  • Brachi B, Morris GP, Borevitz JO (2011) Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol 12:232

    PubMed  PubMed Central  Google Scholar 

  • Bukhov NG, Egorova EA, Govindachary S, Carpentier R (2004) Changes in polyphasic chlorophyll a fluorescence induction curve upon inhibition of donor or acceptor side of photosystem II in isolated thylakoids. Biochim Biophys Acta 1657:121–130

    CAS  PubMed  Google Scholar 

  • Butler WL (1972) On the primary nature of fluorescence yield changes associated with photosynthesis. Proc Natl Acad Sci USA 69:3420–3422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Butler WL (1978) Energy distribution in the photochemical apparatus of photosynthesis. Annu Rev Plant Physiol 29:345–378

    CAS  Google Scholar 

  • Ceppi MG, Oukarroum A, Çiçek N, Strasser RJ, Schansker G (2012) The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: a study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress. Physiol Plant 144:277–288

    CAS  PubMed  Google Scholar 

  • Çiçek N, Oukarroum A, Strasser RJ, Schansker G (2018) Salt stress effects on the photosynthetic electron transport chain in two chickpea lines differing in their salt stress tolerance. Photosynth Res 136:291–301

    PubMed  Google Scholar 

  • Dai Y, Shen Z, Liu Y, Wang L, Hannaway D, Lu H (2009) Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environ Exp Bot 65:177–182

    CAS  Google Scholar 

  • De Wijn R, van Gorkom HJ (2001) Kinetics of electron transfer from QA to QB in photosystem II. Biochemistry 40:11912–11922

    PubMed  Google Scholar 

  • Delosme R, Joliot P (2002) Period four oscillations in chlorophyll a fluorescence. Photosynth Res 73:165–168

    CAS  PubMed  Google Scholar 

  • Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3:43–52

    CAS  PubMed  Google Scholar 

  • Dobáková M, Sobotka R, Tichý M, Komenda J (2009) Psb28 protein is involved in the biogenesis of the Photosystem II inner antenna CP47 (PsbB) in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 149:1076–1086

    PubMed  PubMed Central  Google Scholar 

  • Driever SM, Simkin AJ, Alotaibi S, Fisk SJ, Madgwick PJ, Sparks CA, Jones HD, Lawson T, Parry MA, Raines CA (2017) Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions. Philos Trans R Soc B 372:1–10

    Google Scholar 

  • Genty B, Wonders J, Baker NR (1990) Non-photochemical quenching of Fo in leaves is emission wavelength dependent: consequences for quenching analysis and its interpretation. Photosynth Res 26:133–139

    CAS  PubMed  Google Scholar 

  • Gibson G (2010) Hints of hidden heritability in GWAS. Nat Genet 42:558–560

    CAS  PubMed  Google Scholar 

  • Goedheer JC (1972) Fluorescence in relation to photosynthesis. Annu Rev Plant Physiol (now Biol) 87:1–12

    Google Scholar 

  • Govindjee [G] (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Austral J Plant Physiol (now Funct Plant Biol) 22:131–160

    Google Scholar 

  • Govindjee [G] (2004) Chlorophyll a fluorescence: a bit of basics and history. In: Papageorgiou G, Govindjee (eds) Chlorophyll a fluorescence: a probe of photosynthesis. Kluwer Academic Publishers (now Springer). Dordrecht, Netherlands, pp 2–42

  • Govindjee G, Amesz J, Fork DC (eds) (1986) Light emission by plants and bacteria. Academic Press, Orlando

    Google Scholar 

  • Govindjee G, Shevela D, Björn L (2017) Evolution of the Z-scheme of photosynthesis: a perspective. Photosynth Res 133:5–15

    CAS  PubMed  Google Scholar 

  • Gu J, Yin X, Stomph TJ, Struik PC (2014) Can exploiting natural genetic variation in leaf photosynthesis contribute to increasing rice productivity? A simulation analysis. Plant Cell Environ 37:22–34

    CAS  PubMed  Google Scholar 

  • Guo Y, Tan J (2015) Recent advances in the application of chlorophyll a fluorescence from Photosystem II. Photochem Photobiol 91:1–14

    CAS  PubMed  Google Scholar 

  • Hamdani S, Qu M, Xin C-P, Li M, Govindjee G, Chu C, Zhu X-G (2015) Variations between the photosynthetic properties of elite and landrace Chinese rice cultivars revealed by simultaneous measurements of 820 nm transmission signal and chlorophyll a fluorescence induction. J Plant Physiol 177:128–138

    CAS  PubMed  Google Scholar 

  • Hamdani S, Wang H, Zheng G, Perveen S, Qu M, Khan N, Khan W, Jiang J, Li M, Liu X, Zhu X, Govindjee G, Chu C, Zhu X-G (2019) Genome-wide association study identifies variation of glucosidase being linked to natural variation of the maximal quantum yield of photosystem II. Physiol Plant 166:105–119

    CAS  PubMed  Google Scholar 

  • Hao D, Chao M, Yin Z, Yu D (2012) Genome-wide association analysis detecting significant single nucleotide polymorphisms for chlorophyll and chlorophyll fluorescence parameters in soybean (Glycine max) landraces. Euphytica 186:919–931

    CAS  Google Scholar 

  • Herritt M, Dhanapal AP, Purcell LC, Fritschi FB (2018) Identification of genomic loci associated with 21 chlorophyll fluorescence phenotypes by genome-wide association analysis in soybean. BMC Plant Biol 312:1–19

    Google Scholar 

  • Hoffman GE (2013) Correcting for population structure and kinship using the linear mixed model: theory and extensions. PLoS ONE 8:e75707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967

    CAS  PubMed  Google Scholar 

  • Huang X, Zhao Y, Li C, Wang A, Zhao Q, Li W, Guo Y, Deng L, Zhu C, Fan D (2012) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44:32–39

    Google Scholar 

  • Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Matsuoka M, Kobayashi M (2001) Cloning and functional analysis of two gibberellin 3β-hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci USA 98:8909–8914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jedmowski C, Ashoub A, Momtaz O, Brüggemann W (2015) Impact of drought, heat, and their combination on chlorophyll fluorescence and yield of wild barley (Hordeum spontanum). J Bot 120868:1–9

    Google Scholar 

  • Jimenez-Francisco B, Stirbet A, Aguado-Santacruz GA, Campos H, Conde-Martinez FV, Padilla-Chacon D, Trejo C, Bernacchi CJ, Govindjee G (2019) A comparative chlorophyll a fluorescence study on isolated cells and intact leaves of Bouteloua gracilis (blue grama grass). Photosynthetica 57:77–89

    Google Scholar 

  • Joliot P, Joliot A (2002) Cyclic electron transfer in plant leaf. Proc Natl Acad Sci USA 99:10209–102014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joly D, Carpentier R (2007) The oxidation/reduction kinetics of the plastoquinone pool controls the appearance of the I-peak in the O-J–I–P chlorophyll fluorescence rise: effects of various electron acceptors. J Photochem Photobiol B 88:43–50

    CAS  PubMed  Google Scholar 

  • Kalaji HM, Carpentier R, Allakhverdiev SI, Karolian B (2012) Fluorescence parameters as early indicators of light stress in barley. J Photochem Photobiol B 112:1–6

    CAS  PubMed  Google Scholar 

  • Kalaji HM, Schansker G, Ladle RJ, Goltsev V, Bosa K, Allakhverdiev SI, Brestic M, Bussotti F, Calatayud A, Dabrowski P, Elsheery NI, Ferroni L, Guidi L, Hogewoning SW, Jajoo A, Misra AN, Nebauer SG, Pancaldi S, Penella C, Poli D, Pollastrini M, Romanowska-Duda ZB, Rutkowska B, Serôdio J, Suresh K, Szulc W, Tambussi E, Yanniccari M, Zivcak M (2014) Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth Res 122:121–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalaji HM, Schansker G, Brestic M, Bussotti F, Calatayud A, Ferroni L, Goltsev V, Guidi L, Jajoo A, Li P, Losciale P, Mishra VK, Misra AN, Nebauer SG, Pancaldi S, Penella C, Pollastrini M, Suresh K, Tambussi E, Yanniccari M, Zivcak M, Cetner MD, Samborska IA, Stirbet A, Olsovska K, Kunderlikova K, Shelonzek H, Rusinowski S, Bąba W (2017) Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth Res 132:13–66

    CAS  PubMed  Google Scholar 

  • Goltsev VN, Kalaji HM, Paunov M, Baba V, Horaczek T, Moyski J, Kozel H, Allakhverdiev SI (2016) Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russ J Plant Physiol 63:871–895

    Google Scholar 

  • Kasajima I, Ebana K, Yamamoto T, Takahara K, Yano M, Kawai-Yamada M, Uchimiya H (2011) Molecular distinction in genetic regulation of nonphotochemical quenching in rice. Proc Natl Acad Sci USA 108:13835–13840

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kautsky H, Hirsch A (1931) Neue Versuche zur Kohlensäureassimilation. Naturwissenschaften 19:964

    CAS  Google Scholar 

  • Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA, Zwonitzer JC, Kresovich S, McMullen MD, Ware D (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43:163–168

    CAS  PubMed  Google Scholar 

  • Lazár D (2003) Chlorophyll a fluorescence rise induced by high light illumination of dark-adapted plant tissue studied by means of a model of photosystem II and considering photosystem II heterogeneity. J Theor Biol 220:469–503

    PubMed  Google Scholar 

  • Lazár D (2006) The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Funct Plant Biol 33:9–30

    PubMed  Google Scholar 

  • Li X, Yan W, Agrama H, Hu B, Jia L, Jia M, Jackson A, Moldenhauer K, McClung A, Wu D (2010) Genotypic and phenotypic characterization of genetic differentiation and diversity in the USDA rice mini-core collection. Genetica 138:1221–1230

    CAS  PubMed  Google Scholar 

  • Li L, Ye T, Gao X, Chen R, Xu J, Xie C, Zhu J, Deng X, Wang P, Xu Z (2016) Molecular characterization and functional analysis of the OsPsbR gene family in rice. Mol Genet Genomics 292:271–281

    PubMed  Google Scholar 

  • Li S, Tian Y, Wu K, Ye Y, Yu J, Zhang J, Liu Q, Hu M, Li H, Tong Y, Harberd NP, Fu X (2018) Modulating plant growth–metabolism coordination for sustainable agriculture. Nature 560:595–600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin D, Zheng K, Liu Z, Li Z, Teng S, Xu J, Dong Y (2018) Rice TCM1 encoding a component of the TAC complex is required for chloroplast development under cold stress. Plant Genome 11:1–13

    Google Scholar 

  • Mehta P, Allakhverdiev SI, Jajoo A (2010) Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum). Photosynth Res 105:249–255

    CAS  PubMed  Google Scholar 

  • Mishra M, Wungrampha S, Kumar G, Singla-Pareek SL, Pareek A (2020) How do rice seedlings of landrace Pokkali survive in saline fields after transplantation? Physiology, biochemistry, and photosynthesis. Photosynth Res. https://doi.org/10.1007/s11120-020-00771-6

    Article  PubMed  Google Scholar 

  • Mohanty P, Allakhverdiev SI, Murata N (2007) Application of low temperatures during photoinhibition allows characterization of individual steps in photodamage and the repair of photosystem II. Photosynth Res 94:217–224

    CAS  PubMed  Google Scholar 

  • Munday JC Jr, Govindjee G (1969) Light-induced changes in the fluorescence yield of chlorophyll a in vivo: III. The dip and the peak in the fluorescence transient of Chlorella pyrenoidosa. Biophys J 9:1–21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neubauer C, Schreiber U (1987) The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: I. Saturation characteristics and partial control by the photosystem II acceptor side. Z Naturforsch 42c:1246–1254

    Google Scholar 

  • Oyiga BC, Ogbonnaya FC, Sharma RC, Baum M, Léon J, Ballvora A (2019) Genetic and transcriptional variations in NRAMP-2 and OPAQUE1 genes are associated with salt stress response in wheat. Theor Appl Genet 132:323–346

    CAS  PubMed  Google Scholar 

  • Oukarroum A, El Madidi S, Strasser RJ (2016) Differential heat sensitivity index in barley cultivars (Hordeum vulgare L.) monitored by chlorophyll a fluorescence OKJIP. Plant Physiol Biochem 105:102–108

    CAS  PubMed  Google Scholar 

  • Papageorgiou GC, Govindjee G (eds) (2004) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht

    Google Scholar 

  • Papageorgiou GC, Govindjee G (2011) Photosystem II fluorescence: slow changes - Scaling from the past. J Photochem Photobiol B 104:258–270

    CAS  PubMed  Google Scholar 

  • Pfündel E (1998) Estimating the contribution of Photosystem I to total leaf chlorophyll fluorescence. Photosynth Res 56:185–195

    Google Scholar 

  • PospíšilP DH (2000) Chlorophyll fluorescence transients of photosystem II membrane particles as a tool for studying photosynthetic oxygen evolution. Photosynth Res 65:41–52

    Google Scholar 

  • Qu M, Zheng G, Hamdani S, Essemine J, Song Q, Wang H, Chu C, Sirault X, Zhu X-G (2017) Leaf photosynthetic parameters related to biomass accumulation in a global rice diversity survey. Plant Physiol 175:248–258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quero G, Bonnecarrère V, Simondi S, Santos J, Fernández S, Gutierrez L, Garaycochea S, Borsani O (2020) Genetic architecture of photosynthesis energy partitioning as revealed by a genome-wide association approach. Photosynth Res. https://doi.org/10.1007/s11120-020-00721-2

    Article  PubMed  Google Scholar 

  • Rapacz M, Wójcik-Jagła M, Fiust A, Kalaji HM, Koscielniak J (2019) Genome-wide associations of chlorophyll fluorescence OJIP transient parameters connected with soil drought response in barley. Front Plant Sci 10:78

    PubMed  PubMed Central  Google Scholar 

  • Ripoll J, Bertin N, Bidel LP, Urban L (2016) A user’s view of the parameters derived from the induction curves of maximal chlorophyll a fluorescence: perspectives for analyzing stress. Front Plant Sci 7:1679

    PubMed  PubMed Central  Google Scholar 

  • Satoh K (1981) Fluorescence induction and activity of ferredoxin-NADP+ reductase in Bryopsis chloroplasts. Biochim Biophys Acta 638:327–333

    CAS  Google Scholar 

  • Schansker G, Srivastava A, Govindjee G, Strasser RJ (2003) Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Funct Plant Biol 30:785–796

    CAS  PubMed  Google Scholar 

  • Schansker G, Tóth SZ, Strasser RJ (2005) Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochim Biophys Acta 1706:250–261

    CAS  PubMed  Google Scholar 

  • Schansker G, Tóth SZ, Strasser RJ (2006) Dark recovery of the Chl a fluorescence transient (OJIP) after light adaptation: The qT-component of non-photochemical quenching is related to an activated photosystem I acceptor side. Biochim Biophys Acta 1757:787–879

    CAS  PubMed  Google Scholar 

  • Schansker G, Tóth SZ, Kovacs L, Holzwarth AR, Garab G (2011) Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. Biochim Biophys Acta 1807:1032–1043

    CAS  PubMed  Google Scholar 

  • Schläppi MR, Jackson AK, Eizenga GC, Wang A, Chu C, Shi Y, Shimoyama N, Boykin DL (2017) Assessment of five chilling tolerance traits and GWAS mapping in rice using the USDA mini-core collection. Front Plant Sci 8:957

    PubMed  PubMed Central  Google Scholar 

  • Schreiber U, Vidaver W (1976) The ID fluorescence transient. An indicator of rapid energy distribution changes in photosynthesis. Biochim Biophys Acta 440:205–214

    CAS  PubMed  Google Scholar 

  • Schreiber U (1986) Detection of rapid induction kinetics with a new type of high-frequency modulated chlorophyll fluorometer. Photosynth Res 9:261–272

    CAS  PubMed  Google Scholar 

  • Schreiber U, Neubauer C (1987) The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: II. Partial control by the photosystem II donor side and possible ways of interpretation. Z Naturforsch C 42:1255–1264

    CAS  Google Scholar 

  • Shinkarev VP, Govindjee G (1993) Insight into the relationship of chlorophyll a fluorescence yield to the concentration of its natural quenchers in oxygenic photosynthesis. Proc Natl Acad Sci USA 90:7466–7469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soda N, Gupta BK, Anwar K, Sharan A, Govindjee G, Singla-Pareek SL, Pareek A (2018) Rice Intermediate Filament, OsIF, stabilizes photosynthetic machinery and yield under salinity and heat stress. Sci Rep 8:4072

    PubMed  PubMed Central  Google Scholar 

  • Stirbet A, Govindjee G (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B 104:236–257

    CAS  PubMed  Google Scholar 

  • Stirbet A, Govindjee G (2012) Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. Photosynth Res 113:15–61

    CAS  PubMed  Google Scholar 

  • Stirbet A, Riznichenko GY, Rubin AB, Govindjee. (2014) Modeling chlorophyll a fluorescence transient: relation to photosynthesis. Biochemistry (Mosc) 79:291–323

    CAS  Google Scholar 

  • Stirbet A, Govindjee G (2016) The slow phase of chlorophyll a fluorescence induction in silico: origin of the S-M fluorescence rise. Photosynth Res 130:193–213

    CAS  PubMed  Google Scholar 

  • Stirbet A, Lazár D, Kromdijk J, Govindjee G (2018) Chlorophyll a fluorescence induction: Can just a one second measurement be used to quantify abiotic stress responses? Photosynthetica 56:86–104

    CAS  Google Scholar 

  • Strasser RJ, Govindjee G (1992) The Fo and the O-J-I-P fluorescence rise in higher plants and algae. In: Argyroudi-Akoyunoglou JH (ed) Regulation of chloroplast biogenesis. Plenum Press, New York, pp 423–426

    Google Scholar 

  • Strasser RJ, Srivastava A, Govindjee G (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol 61:32–42

    CAS  Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanisms, regulation and adaptation. Taylor & Francis, London, pp 445–483

    Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: G.C. Papageorgiou and Govindjee (eds.) Chlorophyll a fluorescence: a probe of photosynthesis. Kluwer Academic (now Springer). Dordrecht. pp 321–362

  • Sun Y, Zhang Z, Xu C, Shen C, Gao C, Wang L (2009) Effect of ALA on fast chlorophyll fluorescence induction dynamics of watermelon leaves under chilling stress. Acta Hortic Sin 36:671–678

    CAS  Google Scholar 

  • Szymańska R, Ślesak I, Orzechowska A, Kruk J (2017) Physiological and biochemical responses to high light and temperature stress in plants. Environ Exp Bot 139:165–177

    Google Scholar 

  • Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162

    CAS  PubMed  Google Scholar 

  • Tóth SZ, Schansker G, Strasser RJ (2007) A non-invasive assay of the plastoquinone pool redox state based on the OJIP-transient. Photosynth Res 93:193–203

    PubMed  Google Scholar 

  • Tsai Y-C, Chen K-C, Cheng T-S, Lee C, Lin S-H, Tung C-W (2019) Chlorophyll fluorescence analysis in diverse rice varieties reveals the positive correlation between the seedlings salt tolerance and photosynthetic efficiency. BMC Plant Biol 19:403

    PubMed  PubMed Central  Google Scholar 

  • Tsimilli-Michael M (2020) Revisiting JIP-test: an educative review on concepts, assumptions, approximations, definitions and terminology. Photosynthetica 58:275–292

    CAS  Google Scholar 

  • Turner SD (2018) qqman: an R package for visualizing GWAS results using QQ and Manhattan plots. J Open Source Softw 3:731–732

    Google Scholar 

  • Umate P (2010) Genome-wide analysis of the family of light-harvesting chlorophyll a/b-binding proteins in Arabidopsis and rice. Plant Signal Behav 5:1537–1542

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Rooijen R, Harbinson J, Aarts M (2015) Natural genetic variation for acclimation of photosynthetic light use efficiency to growth irradiance in Arabidopsis. Plant Physiol 167:1412–1429

    PubMed  PubMed Central  Google Scholar 

  • Wang D, Sun Y, Stang P, Berlin JA, Wilcox MA, Li Q (2009) Comparison of methods for correcting population stratification in a genome-wide association study of rheumatoid arthritis: principal-component analysis versus multidimensional scaling. BMC Proc 3(Suppl 7):1–6

    Google Scholar 

  • Wang H, Xu X, Vieira FG, Xiao Y, Li Z, Wang J, Nielsen R, Chu C (2016) The power of inbreeding: NGS-based GWAS of rice reveals convergent evolution during rice domestication. Mol Plant 9:975–985

    CAS  PubMed  Google Scholar 

  • Wang Q, Xie W, Xing H, Yan J, Meng X, Li X, Fu X, Xu J, Lian X, Yu S (2015) Genetic architecture of natural variation in rice chlorophyll content revealed by a genome-wide association study. Mol Plant 8:946–957

    CAS  PubMed  Google Scholar 

  • Wang Q, Zhao H, Jiang J, Xu J, Xie W, Fu X, Liu C, He Y, Wang G (2017) Genetic architecture of natural variation in rice nonphotochemical quenching capacity revealed by genome-wide association study. Front Plant Sci 8:1773

    PubMed  PubMed Central  Google Scholar 

  • Wungrampha S, Joshi R, Rathore RS, Singla-Pareek SL, Govindjee G, Pareek A (2019) CO2 and chlorophyll a fluorescence of Suaeda fruticosa grown under diurnal rhythm and after transfer to continuous dark. Photosynth Res 142:211–227

    CAS  PubMed  Google Scholar 

  • Yan J, Shah T, Warburton ML, Buckler ES, McMullen MD, Crouch J (2009) Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS ONE 4:e8451

    PubMed  PubMed Central  Google Scholar 

  • Yang DL, Jing RL, Chang XP, Li W (2007) Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat (Triticum aestivum). J Int Plant Biol 49:646–654

    CAS  Google Scholar 

  • Yang J, Lee SH, Goddard ME, Visscher PM (2011) GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88:76–82

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Z, Meng F, Song H, He X, Xu X, Yu D (2010) Mapping quantitative trait loci associated with chlorophyll a fluorescence parameters in soybean (Glycine max (L.) Merr.). Planta 231:875–885

    CAS  PubMed  Google Scholar 

  • Zhang M, Shan Y, Kochian L, Strasser RJ, Chen G (2015) Photochemical properties in flag leaves of a super-high-yielding hybrid rice and a traditional hybrid rice (Oryza sativa L.) probed by chlorophyll a fluorescence transient. Photosynth Res 126:275–284

    CAS  PubMed  Google Scholar 

  • Zhao K, Tung C-W, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J, McClung AM, Bustamante CD, McCouch SR (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467

    PubMed  Google Scholar 

  • Zhu XG, Govindjee G, Baker NR, deSturler E, Ort DO, Long SP (2005) Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with Photosystem II. Planta 223:114–133

    CAS  PubMed  Google Scholar 

  • Živčák M, Brestic M, Kalaji HM, Govindjee G (2014) Photosynthetic responses of sun- and shade-grown barley leaves to high light: is the lower connectivity in shade leaves associated with protection against excess of light. Photosynth Res 119:339–354

    PubMed  PubMed Central  Google Scholar 

  • Živčák M, Olšovská K, Slamka P, Galambošová J, Rataj V, Shao H, Brestič M (2015) Application of chlorophyll fluorescence performance indices to assess the wheat photosynthetic functions influenced by nitrogen deficiency. Plant Soil Environ 60:210–215

    Google Scholar 

Download references

Acknowledgements

This work was sponsored by Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB27020105), National Science Foundation of China (31870214), National Research and Development Program of Ministry of Science and Technology of China (2019YFA0904600; 2019YFA09004600). Govindjee thanks the staff of the Information Technology of Life Sciences, University of Illinois at Urbana-Champaign, for help. We thank members of Prof. Chengcai Chu’s lab for plant growth support for experiments done in Beijing. The study was sponsored by CAS-TWAS President’s Ph.D. Fellowship Program (to Naveed Khan) for international Ph.D. students.

Author information

Authors and Affiliations

Authors

Contributions

NK, SH, and XZ conceived and conducted the experiments; NK and SH performed most of the experiments, MQ, ML, JE, SP, and XZ provided technical assistance to NK and NK analyzed the data; GG and XZ supervised the experiments; NK wrote most of the text; JE, GG, AS and XZ supervised and complemented the writing of this manuscript.

Corresponding author

Correspondence to Xin-Guang Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Since 2019 Govindjee uses Govindjee Govindjee as his legal name.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, N., Essemine, J., Hamdani, S. et al. Natural variation in the fast phase of chlorophyll a fluorescence induction curve (OJIP) in a global rice minicore panel. Photosynth Res 150, 137–158 (2021). https://doi.org/10.1007/s11120-020-00794-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-020-00794-z

Keywords

Navigation