Skip to main content

Advertisement

Log in

Nature of low-energy exciton levels in light-harvesting complex II of green plants as revealed by satellite hole structure

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Persistent non-photochemical hole burning at 4.2 K is an efficient experimental tool to unravel position and nature of low-energy excitonic states in pigment-protein complexes. This is demonstrated here for the case of the trimeric chlorophyll (Chl) a/b light-harvesting complexes of Photosystem II (LHC II) of green plants, where previous work (Pieper et al. J Phys Chem B 103:2412, 1999a) reported a highly localized lowest energy state at 680 nm. At that time, this finding appeared to be consistent with the contemporary knowledge about the LHC II structure, which mainly suggested the presence of weakly coupled Chl heterodimers. Currently, however, it is widely accepted that the lowest state is associated with an excitonically coupled trimer of Chl molecules at physiological temperatures. This raises the question, why an excitonically coupled state has not been identified by spectral hole burning. A re-inspection of the hole burning data reveals a remarkable dependence of satellite hole structure on burn fluence, which is indicative of the excitonic coupling of the low-energy states of trimeric LHC II. At low fluence, the satellite hole structure of the lowest/fluorescing  ~ 680 nm state is weak with only one shallow satellite hole at 649 nm in the Chl b spectral range. These findings suggest that the lowest energy state at  ~ 680 nm is essentially localized on a Chl a molecule, which may belong to a Chl a/b heterodimer. At high fluence, however, the lowest energy hole shifts blue to  ~ 677 nm and is accompanied by two satellite holes at  ~ 673 and 663 nm, respectively, indicating that this state is excitonically coupled to other Chl a molecules. In conclusion, LHC II seems to possess two different, but very closely spaced lowest energy states at cryogenic temperatures of 4.2 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

taken from Pieper et al. (1999a) with permission, copyright 1999 American Chemical Society

Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Car:

Carotenoid

Chl:

Chlorophyll

EET:

Excitation energy transfer

FLN:

Fluorescence line-narrowing

LHC II:

Light-harvesting complex II

SHB:

Spectral hole burning

References

  • Akhtar P, Do TN, Nowakowski PJ, Huerta-Viga A, Khyasudeen MF, Lambrev PH, Tan HS (2019) Temperature dependence of the energy transfer in lhcii studied by two-dimensional electronic spectroscopy. J Phys Chem B 123:6765–6775

    Article  CAS  Google Scholar 

  • Croce R, Müller MG, Bassi R, Holzwarth AR (2001) Carotenoid-to-chlorophyll energy transfer in recombinant major light-harvesting complex (LHC II) of higher plants. I. Femtosecond Trans Absorpt Measurements Biophys J 80:901–915

    CAS  Google Scholar 

  • Demmig-Adams B, Adams WW, Garab G, Govindjee U (2014) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria preface. Adv Photosynth Resp 40:27–30

    Google Scholar 

  • Do TN, Huerta-Viga A, Akhtar P, Nguyen HL, Nowakowski PJ, Khyasudeen MF, Lambrev PH, Tan HS (2019) Revealing the excitation energy transfer network of Light-Harvesting Complex II by a phenomenological analysis of two-dimensional electronic spectra at 77 K. J Chem Phys 151:205101

    Article  Google Scholar 

  • Gibasiewicz K, Rutkowski M, van Grondelle R (2009) Fluorescence hole-burning and site-selective studies of LHCII. Photosynthetica 47:232–240

    Article  Google Scholar 

  • Golub M, Rusevich L, Irrgang KD, Pieper J (2018) Rigid versus flexible protein matrix: light-harvesting complex II exhibits a temperature-dependent phonon spectral density. J Phys Chem B 122:7111–7121

    Article  CAS  Google Scholar 

  • Gradinaru CC, van Stokkum IHM, Pascal AA, van Grondelle R, van Amerongen H (2000) Identifying the pathways of energy transfer between carotenoids and chlorophylls in LHCII and CP29. a multicolor, femtosecond pump-probe study. J Phys Chem B 104:9330–9342

    Article  CAS  Google Scholar 

  • Gryliuk G, Rätsep M, Hildebrandt S, Irrgang KD, Eckert HJ, Pieper J (2014) Excitation energy transfer and electron-vibrational coupling in phycobiliproteins of the cyanobacterium Acaryochloris marina investigated by site-selective spectroscopy. BBA 1837:1490–1499

    CAS  PubMed  Google Scholar 

  • Irrgang KD, Boekema EJ, Vater J, Renger G (1988) Structural determination of the Photosystem II core complex from spinach. Eur J Biochem 178:209–217

    Article  CAS  Google Scholar 

  • Jankowiak R, Reppert M, Zazubovich V, Pieper J, Reinot T (2011) Site selective and single complex laser-based spectroscopies: a window on excited state electronic structure, excitation energy transfer, and electron-phonon coupling of selected photosynthetic complexes. Chem Rev 111:4546–4598

    Article  CAS  Google Scholar 

  • Krikunova M, Voigt B, Lokstein H (2002) Direct evidence for excitonically coupled chlorophylls a and b in LHC II of higher plants by nonlinear polarization spectroscopy in the frequency domain. BBA 1556:1–5

    CAS  PubMed  Google Scholar 

  • Kühlbrandt W, Wang DN, Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367:614–621

    Article  Google Scholar 

  • Lewis NH, Gruenke NL, Oliver TA, Fleming GR, Ballottari M, Bassi R (2016) Observation of electronic excitation transfer through light harvesting complex II using two-dimensional electronic-vibrational spectroscopy. J Phys Chem Lett 7:4197–4206

    Article  CAS  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428:287–292

    Article  CAS  Google Scholar 

  • Martiskainen J, Kananavicius R, Linnanto J, Lehtivuori H, Keranen M, Aumanen V, Tkachenko N, Korppi-Tommola J (2011) Excitation energy transfer in the lhcii trimer: from carotenoids to chlorophylls in space and time. Photosynth Res 107:195–207

    Article  CAS  Google Scholar 

  • Mirkovic T, Ostroumov EE, Anna JM, van Grondelle R, Govindjee SGD (2017) Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem Rev 117:249–293

    Article  CAS  Google Scholar 

  • Müh F, Madjet A, Renger T (2010) structure-based identification of energy sinks in plant light-harvesting complex II. J Phys Chem B 114:13517–13535

    Article  Google Scholar 

  • Novoderezhkin VI, Palacios MA, van Amerongen H, van Grondelle R (2005) Excitation dynamics in the LHC II complex of higher plants: modeling based on the 2.72 angstrom crystal structure. J Phys Chem B 109:10493–10504

    Article  CAS  Google Scholar 

  • Pieper J, Rätsep M, Jankowiak R, Irrgang KD, Voigt J, Renger G, Small GJ (1999a) Q(y)-level structure and dynamics of solubilized Light-Harvesting Complex II of green plants: pressure and hole burning studies. J Phys Chem A 103:2412–2421

    Article  CAS  Google Scholar 

  • Pieper J, Irrgang KD, Rätsep M, Jankowiak R, Schrötter T, Voigt J, Small GJ, Renger G (1999b) Effects of aggregation on trimeric light-harvesting complex II of green plants: a hole-burning study. J Phys Chem A 103:2422–2428

    Article  CAS  Google Scholar 

  • Pieper J, Schödel R, Irrgang KD, Voigt J, Renger G (2001) Electron-phonon coupling in solubilized LHC II complexes of green plants investigated by line-narrowing and temperature-dependent fluorescence spectroscopy. J Phys Chem B 105:7115–7124

    Article  CAS  Google Scholar 

  • Pieper J, Irrgang KD, Renger G, Lechner RE (2004) Density of vibrational states of the light-harvesting complex II of green plants studied by inelastic neutron scattering. J Phys Chem B 108:10556–10565

    Article  CAS  Google Scholar 

  • Pieper J, Rätsep M, Irrgang KD, Freiberg A (2009) Chromophore-chromophore and chromophore-protein interactions in monomeric light-harvesting complex II of green plants studied by spectral hole burning and fluorescence line narrowing. J Phys Chem B 113:10870–10880

    Article  CAS  Google Scholar 

  • Pieper J, Rätsep M, Trostmann I, Schmitt FJ, Theiss C, Paulsen H, Renger G, Freiberg A (2011) Excitonic energy level structure and pigment-protein interactions in the recombinant water-soluble chlorophyll protein. II. Spectral hole-burning experiments. J Phys Chem B 115:4053–4065

    Article  CAS  Google Scholar 

  • Pieper J, Rätsep M, Golub M, Schmitt FJ, Artene P, Eckert HJ (2017) Excitation energy transfer in phycobiliproteins of the cyanobacterium Acaryochloris marina investigated by spectral hole burning. Photosyn Res 133:225–234

    Article  CAS  Google Scholar 

  • Ramanan C, Ferretti M, van Roon H, Novoderezhkin VI, van Grondelle R (2017) Evidence for coherent mixing of excited and charge-transfer states in the major plant light-harvesting antenna LHCII. Phys Chem Chem Phys 19:22877

    Article  CAS  Google Scholar 

  • Reddy NRS, van Amerongen H, Kwa SLS, van Grondelle R, Small GJ (1994) Low-energy exciton level structure and dynamics in Light Harvesting Complex II trimers from the Chl a/b complex of Photosystem II. J Phys Chem 98:4729–4735

    Article  CAS  Google Scholar 

  • Remelli R, Varotto C, Sandona D, Croce R, Bassi R (1999) Chlorophyll binding to monomeric light-harvesting complex: a mutational analysis of chromophore-binding residues. J Biol Chem 274:33510–33521

    Article  CAS  Google Scholar 

  • Rogl H, Schödel R, Lokstein H, Kühlbrandt W, Schubert A (2002) Assignment of spectral substructures to pigment-binding sites in higher plant light-harvesting complex LHC-II. Biochemistry 41:2281–2287

    Article  CAS  Google Scholar 

  • Standfuss J, Kühlbrandt W (2004) The three isoforms of the light-harvesting complex II: spectroscopic features, trimer formation, and functional roles. J Biol Chem 279:36884–36891

    Article  CAS  Google Scholar 

  • Standfuss J, Terwisscha van Scheltinga AC, Lamborghini M, Kühlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J 24:919–928

    Article  CAS  Google Scholar 

  • van Amerongen H, van Grondelle R (2001) Understanding the energy transfer function of LHCII, the major light-harvesting complex of green plants. J Phys Chem B 105(3):604–617

    Article  Google Scholar 

  • van Grondelle R, Novoderezhkin VI (2006) Energy transfer in photosynthesis: experimental insights and quantitative models. Phys Chem Chem Phys 8(7):793–807

    Article  Google Scholar 

  • Voigt J, Renger T, Schödel R, Schrötter T, Pieper J, Redlin H (1996) Excitonic effects in the light-harvesting chl a/b-protein complex of higher plants. PSS B 194:333–350

    CAS  Google Scholar 

  • Voigt B, Irrgang KD, Ehlert J, Beenken W, Renger G, Leupold D, Lokstein H (2002) Spectral substructure and excitonic interactions in the minor photosystem II antenna complex CP29 as revealed by non-linear polarization spectroscopy in the frequency domain. Biochemistry 41:3049–3056

    Article  CAS  Google Scholar 

  • Vrandecic K, Rätsep M, Wilk L, Rusevich L, Golub M, Reppert M, Irrgang KD, Kühlbrandt W, Pieper J (2015) Protein dynamics tunes excited state positions in light-harvesting complex II. J Phys Chem B 119:3920–3930

    Article  CAS  Google Scholar 

  • Zucchelli G, Santabarbara S, Jennings RC (2012) The Q(Y) absorption spectrum of the light-harvesting complex II as determined by structure-based analysis of chlorophyll macrocycle deformations. Biochemistry 51:2717–2736

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the Estonian Research Council (Grants PRG 539 and SLOKT 12026 T) is gratefully acknowledged. K.-D. I. is thankful for support from Deutsche Forschungsgemeinschaft (SFB 429, TP A1 and TP A3, respectively). We are also grateful to S. Kussin and M. Weß (TU Berlin) for their help in sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Pieper.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pieper, J., Irrgang, KD. Nature of low-energy exciton levels in light-harvesting complex II of green plants as revealed by satellite hole structure. Photosynth Res 146, 279–285 (2020). https://doi.org/10.1007/s11120-020-00752-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-020-00752-9

Keywords

Navigation