LHCSR1 expression in A. thaliana npq4 mutant
The coding sequence of LHCSR1 was amplified from cDNA synthetized from P. patens protonema, cloned in the pH7WG2 vector under the control of the constitutive 35S promoter and used for Agrobacterium-mediated transformation of npq4 mutant plants. The npq4 mutants are devoid of qE due to the absence of PSBS. Transgenic seeds were collected and grown on hygromycin-B, resistant seedlings were transferred to soil, together with A. thaliana wild type (WT) and npq4 control plants. Leaf extracts from A. thaliana genotypes and P. patens protonema tissue were analyzed by western blotting using α-LHCSR (Pinnola et al. 2013) and α-CP43 antibodies. WT and npq4 plants showed no reaction with α-LHCSR while CP43 was detected in all samples (Fig. S1b). In P. patens both LHCSR1 and LHCSR2 were detected. In A. thaliana a single band, corresponding to LHCSR1, was obtained in hygromycin-resistant A. thaliana plants with a mobility matching the native LHCSR1 protein in P. patens thylakoid membranes. This suggests that P. patens LHCSR1 is both expressed and processed to its mature form in A. thaliana. The strongest LHCSR1 expressors among the complemented A. thaliana npq4 lines were selected (C1, C3 and A5) and used to create homozygous lines, these lines contained multiple insertions which was established from the segregation pattern in later generations. It was verified that the T4 generation of line C1 was stable and further experiments, unless otherwise indicated, were performed on the T5 generation of this line. A quantitative western blot showed that these plants contain 82.8 ± 1.8% of LHCSR1 in comparison to the LHCSR1-only P. patens psbs-lhcsr2 knock-out (ko) (Fig. S2).
LHCSR1 localization in A. thaliana thylakoid membranes
Thylakoid membranes from A. thaliana npq4 plants expressing LHCSR1 and control npq4 plants were purified and analyzed by SDS-PAGE (Fig. 1a). A band with the apparent molecular weight of LHCSR1 was present with a mobility between Lhcb3 and Lhcb6 (CP24) in the complemented plants but not in the background line npq4. The new band from the LHCSR1 expressing A. thaliana thylakoids was excised from gel and submitted to mass spectrometric analysis which yielded 10 peptides covering 58% of the mature protein sequence (Fig. S3). Each peptide matched the theoretical mass calculated from the DNA sequence, as predicted by ChloroP (Emanuelsson et al. 1999), implying no post-translational modifications were present within the identified fragments. No other identifiable changes in protein composition could be detected between the two genotypes (Fig. 1a). Furthermore, western blot analysis confirmed that the α-LHCSR antibody reacted against the LHCSR1 protein accumulated in the thylakoid membranes of the complemented plants (Fig. 1b) with the same electrophoretic mobility as the native protein from P. patens. LHCSR1 and LHCSR2 were detected in the WT P. patens thylakoids, but not in the P. patens lhcsr1-lhcsr2 ko thylakoid membranes (Fig. 1b).
The distribution of LHCSR1 in the thylakoid domains of A. thaliana, was assessed by thylakoid fractionation with n-dodecyl α-d-maltoside (α-DM) (Morosinotto et al. 2010; Pinnola et al. 2015a, b). The procedure yielded a pellet enriched in grana membranes and a supernatant comprising the stroma lamellae. The Coomassie-stained SDS-PAGE gel confirmed PSI and ATPase were in the stroma-derived supernatant fraction while the PSII core subunit as well as LHCII and Lhcb6 (CP24) were enriched in the pellet, i.e. the grana partitions (Fig. 1c). A band with the apparent molecular weight corresponding to LHCSR1 was highly enriched in the supernatant, suggesting that recombinant LHCSR1 was localized in thylakoid stroma-exposed membranes of complemented A. thaliana npq4. This was confirmed by western blot (Fig. 1d) and step-solubilization with increasing concentrations of α-DM detergent, namely 0.16, 0.24, 0.32, 0.39 and 0.47% α-DM (Fig. S4). Immunoblotting showed that LHCSR1 was already enriched in the stromal fraction at 0.16% α-DM with a Chl a/b ratio > 6.0 and a polypeptide composition, including PSI and ATPase, typical of stroma membranes (Fig. S4a, b). Low amounts of LHCSR1 were found in the pellet fractions up to 0.32% α-DM suggesting that the protein might also be localized in the margins of A. thaliana thylakoids.
Pigment binding to recombinant LHCSR1 and their spectra
LHCSR is a pigment-binding protein in C. reinhardtii and P. patens (Bonente et al. 2011; Pinnola et al. 2013). To verify that recombinant LHCSR1 expressed in A. thaliana did actually refold properly with pigments, thylakoid membranes were analyzed by Deriphat PAGE (Fig. 2a). Although the protein composition was similar between the two genotypes, A. thaliana npq4 + LHCSR1 did contain two additional bands with respect to A. thaliana npq4, migrating, respectively, just below the monomeric LHC band and in between LHC monomers and trimers. Gel slices were excised from the gel and further separated by denaturing SDS-PAGE, followed by western blotting. The two “additional” bands in the gel from A. thaliana npq4 + LHCSR1 showed strong reaction towards the α-LHCSR antibody (Fig. 2b). Fainter reactions were also obtained with fractions from in between the two bands but not with those at lower or higher mobility, suggesting that LHCSR1 migrated initially as a dimeric Chl binding protein which partially dissociated into monomers during solubilization and/or electrophoretic migration.
LHCSR proteins have a characteristically red-shifted absorption spectrum with respect to other LHC proteins (Bonente et al. 2011; Pinnola et al. 2013, 2015b). Absorption spectra recorded from extracted gel bands showed a red-shifted Qy peak at 679.1 nm with respect to LHCII trimers (674.2 nm) and LHC monomers (676.9 nm), typical for LHCSR1 (Bonente et al. 2011; Pinnola et al. 2017) (Fig. 2c). Also, the LHCSR1-containing band was depleted of Chl b with respect to the bands from other LHCs, thus copying the properties of recombinant LHCSR proteins either refolded in vitro or expressed in tobacco (Bonente et al. 2011; Pinnola et al. 2015b).
NPQ activity of LHCSR1 in A. thaliana
As previously mentioned, the NPQ activity of PSBS and LHCSR is additive and independent in P. patens plants (Alboresi et al. 2010; Gerotto et al. 2012). It was tested whether LHCSR1 could confer a light dependent in vivo quenching activity in the A. thaliana npq4 mutant. Therefore, the Chl fluorescence quenching of A. thaliana WT, npq4 plants and the complemented lines were measured using Chl fluorescence imaging. The protocol consisted of a 45 min dark adaptation of the leaves, followed by 5 min white actinic light (1200 µmol photons m−2 s−1) and 5 min of dark recovery (Fig. 3). When the protocol was applied to dark-adapted leaves, only a small difference in quenching activity was observed, suggesting the expression of LHCSR1 did not confer significant NPQ activity (Fig. 3a). However, when the same protocol was applied for the second-time, larger differences between npq4 and npq4 + LHCSR1 were observed (Fig. 3b). Two additional cycles of NPQ induction and relaxation were applied, where the differences were even further pronounced between the second and third measurement, the NPQ was very similar between the third and the fourth measurement (Fig. 3c, d). Interesting to note is that the npq4 mutant showed a characteristic transient increase of quenching at the first point in the dark after switching off the actinic light, this jump was not detected in plants containing PSBS nor was it detected in lines expressing LHCSR1 (Fig. 3a–d). Since the accuracy of these NPQ measurements depends on that of the Fm measurements. All the Fv/Fm values of the different NPQ measurements were included in Tables S1 and S2. Fv/Fm values were found to be very similar for all the different LHCSR1 expressing lines (i.e. below 2%).
LHCSR1 and zeaxanthin synthesis
Since Zea has a major influence on the quenching activity of LHCSR1 (Pinnola et al. 2013), the slow onset of LHCSR1-dependent NPQ activity in A. thaliana suggests that Zea accumulation might be limiting. Therefore, the leaf pigment content was determined by HPLC analysis of the npq4 and two independent npq4 + LHCSR1 lines during two cycles of 10 min illumination followed by a 10 min dark relaxation. Zea accumulated to the same level in both genotypes (Table S3) at the end of each dark or light phase while the 10-min dark periods did not allow for a decrease in Zea level. We conclude that the repeated cycles of illumination (Fig. 3) lead to an increased NPQ activity, which is consistent with the accumulation of Zea (Table S3).
Correlation between LHCSR1 accumulation level and NPQ activity
To verify whether NPQ activity correlated with the amount of LHCSR1, nine lines with different levels of NPQ were selected (Fig. 4a). Total leaf extracts were titrated with an α-LHCSR polyclonal antibody (Fig. 4b). Both qE and total NPQ activities linearly correlated with the level of LHCSR1. An estimation of the qE was determined by differences between NPQ values recorded at the end of the 5-min light period and upon 2 min of dark relaxation, allowing for a rapid estimation of qE activity (Dall’Osto et al. 2014). The NPQ activity per LHCSR1 unit was lower in A. thaliana with respect to P. patens since LHCSR1-only mosses did show an NPQ score threefold higher than the complemented A. thaliana npq4 lines (Fig. 5a), while the level of LHCSR1 in P. patens psbs-lhcsr2 ko was only 1.2-fold higher (Fig. S2).
LHCSR1-dependent NPQ in A. thaliana: dependence on light intensity
In order to investigate the reasons for the low LHCSR1 activity in A. thaliana versus P. patens, we verified the hypothesis that mosses might differ from A. thaliana for their light intensity dependence of LHCSR1 activity consistent with moss adaptation to shaded habitats. To this aim, three npq4 + LHCSR1 lines with high and intermediate NPQ activity at 800 µmol photons m−2 s−1 were selected and measured at a series of actinic light intensities: low light intensity (100 µmol photons m−2 s−1) up to 1000 µmol photons m−2 s−1. Before each measurement, leaves were dark-adapted for 45 min, pre-treated with actinic light (800 µmol photons m−2 s−1) for 15 min in order to accumulate equal Zea levels and left to relax for 10 min in the dark. Leaves from A. thaliana WT and npq4 plants of the same age were used as controls. At the lowest light intensity, transient NPQ was observed in all A. thaliana genotypes, which rapidly dropped, likely due to activation of the ATPase dissipating the ΔpH for ATP synthesis (Fig. 6). However, as the intensity of actinic light increased, plants activated NPQ and the LHCSR1 complemented lines already showed activity at 200 µmol photons m−2 s−1. Peak activity was reached after 2–3 min light exposure and the NPQ level was maximal at 400 and 600 µmol photons m−2 s−1, with lower values at both lower and higher actinic light intensities. WT A. thaliana, besides showing at least twofold higher NPQ values, also did show strikingly different NPQ kinetics, monotonously rising under actinic light conditions and only relaxing when light was switched off. The partial relaxation of NPQ under actinic light could be explained by a relaxation of lumen acidity after 3 min of light treatment.
To verify whether the activation of LHCSR1 might be affected by the amplitude of the pH gradient formation, we proceeded to measure the ΔpH through thylakoid membranes at different light intensities. To this aim, chloroplasts of A. thaliana npq4 + LHCSR1 plants and P. patens psbs-lhcsr2 ko were illuminated in the presence of the fluorophore 9-aminoacridine (9-AA). 9-AA fluorescence is quenched upon protonation when the chemical diffuses through the thylakoids into the lumen dependent on the trans-membrane pH gradient. Figure 5b shows the 9-AA fluorescence quenching in A. thaliana versus P. patens at different light intensities, implying a different capacity of building up a trans-thylakoid pH gradient between the two organisms. Despite the fact that A. thaliana was able to reach higher ΔpH levels than P. patens, the NPQ activity of LHCSR1 in A. thaliana was lower with respect to P. patens (Fig. 5a).
LHCSR1 expression and NPQ activity in xanthophyll biosynthesis mutants
The above results imply that LHCSR1 proteins expressed in A. thaliana npq4 can partially complement the lack of PSBS. When purified from Physcomitrella patens, LHCSR1 binds lutein (Lut) and Vio, part of which are substituted by Zea upon high light treatment (Pinnola et al. 2013). To identify the role of these xanthophylls for activation of LHCSR1 in A. thaliana we proceeded with the transformation of the lhcsr1-gene in the following A. thaliana double mutants: (i) npq1npq4, unable to accumulate Zea due to the lack of violaxanthin de-epoxidase (vde); (ii) npq2npq4, a mutant accumulating Zea due to the absence of zeaxanthin epoxidase (zep) (iii) lut2npq4, the lutein-less genotype defective in the lycopene ε-cyclase activity, which compensates missing Lut with increased levels of Vio.
Transformation of the npq1npq4 mutant with LHCSR1 and selection in hygromycin yielded 16 stable lines, which accumulated LHCSR1 as assessed by western blot analysis (Fig. S5b), implying LHCSR1 can be expressed and accumulated in the absence of Zea (Fig. S5b). No major differences in the size or shape of the transformed plants were detected (Fig. S5a). The NPQ activity of npq1npq4 plants and three independent complemented lines was measured by video-imaging following the initial protocol (see M&M). The quenching activity of the complemented lines was the same as in the npq1npq4 background and did not increase during the subsequent cycles of illumination, failing to reveal any difference between npq1npq4 (i.e. control) and the complemented npq1npq4 + LHCSR1 plants (Fig. 7a, b; Fig. S6a–d). This result is in agreement with previous reports in the homologous system P. patens showing that LHCSR1 requires Zea for quenching (Pinnola et al. 2013).
The npq2 mutant lacks Vio and accumulates full levels of Zea as well as Lut (Niyogi et al. 1998; Peers et al. 2009). Complementation of the npq2npq4 mutant yielded three plants accumulating LHCSR1 (Fig. S7). NPQ activity differed with respect to npq4 + LHCSR1 in that it appeared already during the first cycle of illumination in dark-adapted plants (Fig. 7c, d; Fig. S8a–d). Furthermore, the total amount of NPQ in these plants was much higher, reaching up to 70% of A. thaliana WT. These observations indicate that the build-up and level of Zea are one of the limiting factors in the NPQ activity of LHCSR1. During the fourth cycle the maximal NPQ was reached after 2 min and showed the same partial relaxation kinetics as the npq4 + LHCSR1. This relaxation, however, could already be observed during the third cycle in the npq2npq4 complemented lines, but not in npq4 + LHCSR1.
LHCSR1 expression in the lut2npq4 yielded no major phenotypic differences between control and LHCSR1–complemented lut2npq4 plants (Fig. S9a). Total leaf extracts from the complemented lines were analyzed by western blot with the α-LHCSR antibodies (Fig. S9b), showing that the protein was processed to its mature form without Lut. Using the 4-cycle actinic light protocol, the control and complemented lines were essentially indistinguishable in the first cycle (Fig. 7e). However, upon the second cycle the curves of the different genotypes became more shifted towards higher values with the exception of lut2npq4, which remained unchanged (Fig. S10). Two additional cycles further increased the difference in NPQ between lut2npq4 and the complemented lines (Fig. 7f). Two features characterized these measurements with respect to the npq4 + LHCSR1 genotype: first, the higher level of qE obtained in the lut2npq4 + LHCSR1 with respect to npq4 + LHCSR1; second, that the maximal NPQ values were obtained at the end of the illumination (5 min) rather than at the second minute as previously observed with the npq4 + LHCSR1 and npq2npq4 + LHCSR1 genotypes, consistent with a delay in reaching full de-epoxidation of Vio bound to slowly exchanging binding sites (Morosinotto et al. 2002).