Skip to main content
Log in

Rather rule than exception? How to evaluate the relevance of dual protein targeting to mitochondria and chloroplasts

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Dual targeting of a nuclearly encoded protein into two different cell organelles is an exceptional event in eukaryotic cells. Yet, the frequency of such dual targeting is remarkably high in case of mitochondria and chloroplasts, the two endosymbiotic organelles of plant cells. In most instances, it is mediated by “ambiguous” transit peptides, which recognize both organelles as the target. A number of different approaches including in silico, in organello as well as both transient and stable in vivo assays are established to determine the targeting specificity of such transit peptides. In this review, we will describe and compare these approaches and discuss the potential role of this unusual targeting process. Furthermore, we will present a hypothetical scenario how dual targeting might have arisen during evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abel S, Theologis A (1994) Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. Plant J 5:421–427

    Article  CAS  Google Scholar 

  • Bandlow W, Strobel G, Zoglowek C, Oechsner U, Magdolen V (1988) Yeast adenylate kinase is active simultaneously in mitochondria and cytoplasm and is required for non-fermentative growth. FEBS J 178:451–457

    CAS  Google Scholar 

  • Barton KA, Schattat MH, Jakob T, Hause G, Wilhelm C, Mckenna JF, Mathur J (2016) Epidermal pavement cells of Arabidopsis have chloroplasts. Plant Physiol 171:723–726

    PubMed  Google Scholar 

  • Baudisch B, Klösgen RB (2012) Dual targeting of a processing peptidase into both endosymbiotic organelles mediated by a transport signal of unusual architecture. Mol Plant 5:494–503

    Article  CAS  Google Scholar 

  • Baudisch B, Langner U, Garz I, Klösgen RB (2014) The exception proves the rule? Dual targeting of nuclear-encoded proteins into endosymbiotic organelles. New Phytol 201:80–90

    Article  CAS  Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326

    Article  CAS  Google Scholar 

  • Cabantous S, Terwilliger TC, Waldo GS (2005) Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat Biotechnol 23:102–107

    Article  CAS  Google Scholar 

  • Carrie C, Small I (2013) A reevaluation of dual-targeting of proteins to mitochondria and chloroplasts. Biochim Biophys Acta-Mol Cell Res 1833:253–259

    Article  CAS  Google Scholar 

  • Carrie C, Whelan J (2013) Widespread dual targeting of proteins in land plants: when, where, how and why. Plant Signal Behav 8:e25034

    Article  Google Scholar 

  • Carrie C, Murcha MW, Kuehn K, Duncan O, Barthet M, Smith PM, Eubel H, Meyer E, Day DA, Millar AH, Whelan J (2008) Type II NAD(P)H dehydrogenases are targeted to mitochondria and chloroplasts or peroxisomes in Arabidopsis thaliana. FEBS Lett 582:3073–3079

    Article  CAS  Google Scholar 

  • Chabregas SM, Luche DD, Farias LP, Ribeiro AF, Van Sluys MA, Menck CF, Silva-Filho MC (2001) Dual targeting properties of the N-terminal signal sequence of Arabidopsis thaliana THI1 protein to mitochondria and chloroplasts. Plant Mol Biol 46:639–650

    Article  CAS  Google Scholar 

  • Christensen AC, Lyznik A, Mohammed S, Elowsky CG, Elo A, Yule R, Mackenzie SA (2005) Dual-domain, dual-targeting organellar protein presequences in Arabidopsis can use non-AUG start codons. Plant Cell 17:2805–2816

    Article  CAS  Google Scholar 

  • Duchêne A-M, Giritch A, Hoffmann B, Cognat V, Lancelin D, Peeters NM, Zaepfel M, Maréchal-Drouard L, Small ID (2005) Dual targeting is the rule for organellar aminoacyl-tRNA synthetases in Arabidopsis thaliana. Proc Natl Acad Sci 102:16484–16489

    Article  Google Scholar 

  • Dupree P, Pwee KH, Gray JC (1991) Expression of photosynthesis gene-promoter fusions in leaf epidermal cells of transgenic tobacco plants. Plant J 1:115–120

    Article  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  CAS  Google Scholar 

  • Foyer CH, Karpinska B, Krupinska K (2014) The functions of WHIRLY1 and REDOX-RESPONSIVE TRANSCRIPTION FACTOR 1 in cross tolerance responses in plants: a hypothesis. Philos Trans R Soc B 369:20130226–20130226

    Article  Google Scholar 

  • Fuss J, Liegmann O, Krause K, Rensing SA (2013) Green targeting predictor and ambiguous targeting predictor 2: the pitfalls of plant protein targeting prediction and of transient protein expression in heterologous systems. New Phytol 200:1022–1033

    Article  CAS  Google Scholar 

  • García-Mata R, Bebök Z, Sorscher EJ, Sztul ES (1999) Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera. J Cell Biol 146:1239–1254

    Article  Google Scholar 

  • Garg SG, Gould SB (2016) The role of charge in protein targeting evolution. Trends Cell Biol 26:894–905

    Article  CAS  Google Scholar 

  • Ge C, Spånning E, Glaser E, Wieslander Å (2014) Import determinants of organelle-specific and dual targeting peptides of mitochondria and chloroplasts in Arabidopsis thaliana. Mol Plant 7:121–136

    Article  CAS  Google Scholar 

  • Gray MW (1993) Origin and evolution of organelle genomes. Curr Opin Genet Dev 3:884–890

    Article  CAS  Google Scholar 

  • Guillaumot D, Lopez-Obando M, Baudry K, Avona A, Rigailla G, Falcon de Longeviallea A, Brochea B, Takenakad M, Berthoméa R, De Jaegere G, Delannoya E, Lurina C (2017) Two interacting PPR proteins are major Arabidopsis editing factors in plastid and mitochondria. Proc Natl Acad Sci 114:8877–8882

    Article  CAS  Google Scholar 

  • Heazlewood JL (2004) Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell Online 16(1):241–256

    Article  CAS  Google Scholar 

  • Hedtke B, Börner T, Weihe A (2000) One RNA polymerase serving two genomes. EMBO Rep 1:435–440

    Article  CAS  Google Scholar 

  • Hedtke B, Legen J, Weihe A, Herrmann RG, Börner T (2002) Six active phage-type RNA polymerase genes in Nicotiana tabacum. Plant J 30:625–637

    Article  CAS  Google Scholar 

  • Höglund A, Dönnes P, Blum T, Adolph HW, Kohlbacher O (2006) MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition. Bioinformatics 22:1158–1165

    Article  Google Scholar 

  • Hooks KB, Turner JE, Graham IA, Runions J, Hooks MA (2012) GFP-tagging of Arabidopsis acyl-activating enzymes raises the issue of peroxisome-chloroplast import competition versus dual localization. J Plant Physiol 169:1631–1638

    Article  CAS  Google Scholar 

  • Hooper CM, Castleden IR, Tanz SK, Aryamanesh N, Millar AH (2017) SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Res 45:D1064–D1074

    Article  CAS  Google Scholar 

  • Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587

    Article  Google Scholar 

  • Hu C, Lin S, Chi W, Charng Y (2012) Recent gene duplication and subfunctionalization produced a mitochondrial GrpE, the nucleotide exchange factor of the Hsp70 complex, specialized in thermotolerance to chronic heat stress in Arabidopsis. Plant Physiol 158:747–758

    Article  CAS  Google Scholar 

  • Klein TM, Arentzen R, Lewis PA, Fitzpatrick-McElligott S (1992) Transformation of microbes, plants and animals by particle bombardment. Nat Biotechnol 10:286–291

    Article  CAS  Google Scholar 

  • Kmiec B, Teixeira PF, Glaser E (2014) Phenotypical consequences of expressing the dually targeted presequence protease, AtPreP, exclusively in mitochondria. Biochimie 100:167–170

    Article  CAS  Google Scholar 

  • Lai Z, Li Y, Wang F, Cheng Y, Fan B, Yu JQ, Chen Z (2011) Arabidopsis sigma factor binding proteins are activators of the WRKY33 transcription factor in plant defense. Plant Cell 23:3824–3841

    Article  CAS  Google Scholar 

  • Lang BF, Gray MW, Burger G (1999) Mitochondrial genome evolution and the origin of eukaryotes. Annu Rev Genet 33:351–397

    Article  CAS  Google Scholar 

  • Langner U, Baudisch B, Klösgen RB (2014) Organelle import of proteins with dual targeting properties into mitochondria and chloroplasts takes place by the general import pathways. Plant Signal Behav 9:e29301

    Article  Google Scholar 

  • Lee J, Lee H, Kim J, Lee S, Kim DH, Kim S, Hwang I (2011) Both the hydrophobicity and a positively charged region flanking the C-terminal region of the transmembrane domain of signal-anchored proteins play critical roles in determining their targeting specificity to the endoplasmic reticulum or endosymbiotic organelles in Arabidopsis cells. Plant Cell 23:1588–1607

    Article  CAS  Google Scholar 

  • Leese BM, Leech RM (1976) Sequential changes in the lipids of developing proplastids isolated from green maize leaves. Plant Physiol 57:789–794

    Article  CAS  Google Scholar 

  • Margulis L (1981) Symbiosis in cell evolution: life and its environment on the early earth. Freeman Press, San Francisco

    Google Scholar 

  • Marques JP, Schattat MH, Hause G, Dudeck I, Klösgen RB (2004) In vivo transport of folded EGFP by the ∆pH/TAT-dependent pathway in chloroplasts of Arabidopsis thaliana. J Exp Bot 55:1697–1706

    Article  CAS  Google Scholar 

  • Martin W (2010) Evolutionary origins of metabolic compartmentalization in eukaryotes. Philos Trans R Soc B 365:847–855

    Article  CAS  Google Scholar 

  • Martin W, Herrmann RG (1998) Gene transfer from organelles to the nucleus: how much, what happens, and why? Plant Physiol 118(1):9–17

    Article  CAS  Google Scholar 

  • Mazzoleni M, Figuet S, Martin-Laffon J, Mininno M, Gilgen A, Leroux M, Brugière S, Tardif M, Alban C, Ravanel S (2015) Dual targeting of the protein methyltransferase PrmA contributes to both chloroplastic and mitochondrial ribosomal protein L11 methylation in Arabidopsis. Plant Cell Physiol 56:1697–1710

    Article  CAS  Google Scholar 

  • McFadden GI (1999) Endosymbiosis and evolution of the plant cell. Curr Opin Plant Biol 2:513–519

    Article  CAS  Google Scholar 

  • Millar AH, Heazlewood JL, Kristensen BK, Braun HP, Møller I (2005) The plant mitochondrial proteome. Trends Plant Sci 10:36–43

    Article  CAS  Google Scholar 

  • Mitschke J, Fuss J, Blum T, Höglund A, Reski R, Kohlbacher O, Rensing SA (2009) Prediction of dual protein targeting to plant organelles. New Phytol 183:224–236

    Article  CAS  Google Scholar 

  • Nevarez PA, Qiu Y, Inoue H, Yoo CY, Benfey PN, Schnell DJ, Chen M (2017) Mechanism of dual-targeting of a transcriptional co-activator to plastids and the nucleus. Plant Physiol 173:1953–1966

    Article  CAS  Google Scholar 

  • Obara K, Sumi K, Fukuda H (2002) The use of multiple transcription starts causes the dual targeting of Arabidopsis putative monodehydroascorbate reductase to both mitochondria and chloroplasts. Plant Cell Physiol 43:697–705

    Article  CAS  Google Scholar 

  • Papadakis AK, Roubelakis-Angelakis KA (2002) Oxidative stress could be responsible for the recalcitrance of plant protoplasts. Plant Physiol Biochem 40:549–559

    Article  CAS  Google Scholar 

  • Peeters N, Small I (2001) Dual targeting to mitochondria and chloroplasts. Biochim Biophys Acta - Mol Cell Res 1541:54–63

    Article  CAS  Google Scholar 

  • Reichel C, Mathur J, Eckes P, Langenkemper K, Koncz C, Schell J, Reiss B, Maas C (1996) Enhanced green fluorescence by the expression of an Aequorea victoria green fluorescent protein mutant in mono- and dicotyledonous plant cells. Proc Natl Acad Sci 93:5888–5893

    Article  CAS  Google Scholar 

  • Ren Y, Li Y, Jiang Y, Wu B, Miao Y (2017) Phosphorylation of WHIRLY1 by CIPK14 shifts its localization and dual functions in Arabidopsis. Mol Plant 10:749–763

    Article  CAS  Google Scholar 

  • Rödiger A, Baudisch B, Klösgen RB (2010) Simultaneous isolation of intact mitochondria and chloroplasts from a single pulping of plant tissue. J Plant Physiol 167:620–624

    Article  Google Scholar 

  • Rödiger A, Baudisch B, Langner U, Klösgen RB (2011) Dual targeting of a mitochondrial protein: the case study of cytochrome c1. Mol Plant 4:679–687

    Article  Google Scholar 

  • Rudhe C, Chew O, Whelan J, Glaser E (2002) A novel in vitro system for simultaneous import of precursor proteins into mitochondria and chloroplasts. Plant J 30:213–220

    Article  CAS  Google Scholar 

  • Schlücking K, Edel KH, Köster P, Drerup MM, Eckerta C, Steinhorsta L, Waadtab R, Batističa O, Kudla J (2013) A new β-estradiol-inducible vector set that facilitates easy construction and efficient expression of transgenes reveals CBL3-dependent cytoplasm to tonoplast translocation of CIPK5. Mol Plant 6:1814–1829

    Article  Google Scholar 

  • Sheen J, Hwang S, Niwa Y, Kobayashi H, Galbraith DW (1995) Green fluorescent protein as a new vital marker in plant cells. Plant J 8:777–784

    Article  CAS  Google Scholar 

  • Small I, Peeters N, Legeai F, Lurin C (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4:1581–1590

    Article  CAS  Google Scholar 

  • Staiger C, Hinneburg A, Klösgen RB (2009) Diversity in degrees of freedom of mitochondrial transit peptides. Mol Biol Evol 26:1773–1780

    Article  CAS  Google Scholar 

  • Sun Q, Zybailov B, Majeran W, Friso G, Olinares PDB, van Wijk KJ (2009) PPDB, the plant proteomics database at cornell. Nucleic Acids Res 37:D969–D974

    Article  CAS  Google Scholar 

  • Sunderland PA, West CE, Waterworth WM, Bray CM (2006) An evolutionarily conserved translation initiation mechanism regulates nuclear or mitochondrial targeting of DNA ligase 1 in Arabidopsis thaliana. Plant J 47:356–367

    Article  CAS  Google Scholar 

  • Tabak HF, Murk JL, Braakman I, Geuze HJ (2003) Peroxisomes start their life in the endoplasmic reticulum. Traffic 4:512–518

    Article  CAS  Google Scholar 

  • Tarasenko VI, Katyshev AI, Yakovleva TV, Garnik EY, Chernikova VV, Konstantinov YM, Koulintchenko MV (2016) RPOTmp, an Arabidopsis RNA polymerase with dual targeting, plays an important role in mitochondria, but not in chloroplasts. J Exp Bot 67:5657–5669

    Article  CAS  Google Scholar 

  • Teardo E, Carraretto L, De Bortoli S, Costa A, Behera S, Wagner R, Lo Schiavo F, Formentin E, Szabo I (2015) Alternative splicing-mediated targeting of the Arabidopsis GLUTAMATE RECEPTOR3.5 to mitochondria affects organelle morphology. Plant Physiol 167:216–227

    Article  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Toyooka K, Moriyasu Y, Goto Y, Takeuchi M, Fukuda H, Matsuoka K (2006) Protein aggregates are transported to vacuoles by a macroautophagic mechanism in nutrient-starved plant cells. Autophagy 2:96–106

    Article  CAS  Google Scholar 

  • Tsien RY (1998) The green florescent protein. Annu Rev Biochem 67:509–544

    Article  CAS  Google Scholar 

  • Ueda M, Nishikawa T, Fujimoto M, Takanashi H, Arimura SI, Tsutsumi N, Kadowaki KI (2008) Substitution of the gene for chloroplast RPS16 was assisted by generation of a dual targeting signal. Mol Biol Evol 25:1566–1575

    Article  CAS  Google Scholar 

  • Wamboldt Y, Mohammed S, Elowsky C, Wittgren C, De Paula WB, Mackenzie SA (2009) Participation of leaky ribosome scanning in protein dual targeting by alternative translation initiation in higher plants. Plant Cell 21:157–167

    Article  CAS  Google Scholar 

  • Watanabe N, Che FS, Iwano M, Takayama S, Yoshida S, Isogai A (2001) Dual targeting of spinach protoporphyrinogen oxidase II to mitochondria and chloroplasts by alternative use of two in-frame initiation codons. J Biol Chem 276:20474–20481

    Article  CAS  Google Scholar 

  • Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3:259–273

    Article  CAS  Google Scholar 

  • Xiong E, Zheng C, Wu X, Wang W (2016) Protein subcellular location: the gap between prediction and experimentation. Plant Mol Biol Rep 34:52–61

    Article  CAS  Google Scholar 

  • Xu L, Carrie C, Law S, Murcha MW, Whelan J (2012) Acquisition, conservation and loss of dual-targeted proteins in land plants. Plant Physiol 161:644–662

    Article  Google Scholar 

Download references

Acknowledgements

M.S. was supported by a fellowship from the BRAVE project funded by the ERASMUS MUNDUS Action 2 program of the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Bernd Klösgen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Bennewitz, B. & Klösgen, R.B. Rather rule than exception? How to evaluate the relevance of dual protein targeting to mitochondria and chloroplasts. Photosynth Res 138, 335–343 (2018). https://doi.org/10.1007/s11120-018-0543-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-018-0543-7

Keywords

Navigation