Skip to main content
Log in

Acclimation of Swedish and Italian ecotypes of Arabidopsis thaliana to light intensity

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

This study addressed whether ecotypes of Arabidopsis thaliana from Sweden and Italy exhibited differences in foliar acclimation to high versus low growth light intensity, and compared CO2 uptake under growth conditions with light- and CO2-saturated intrinsic photosynthetic capacity and leaf morphological and vascular features. Differential responses between ecotypes occurred mainly at the scale of leaf architecture, with thicker leaves with higher intrinsic photosynthetic capacities and chlorophyll contents per leaf area, but no difference in photosynthetic capacity on a chlorophyll basis, in high light-grown leaves of the Swedish versus the Italian ecotype. Greater intrinsic photosynthetic capacity per leaf area in the Swedish ecotype was accompanied by a greater capacity of vascular infrastructure for sugar and water transport, but this was not associated with greater CO2 uptake rates under growth conditions. The Swedish ecotype with its thick leaves is thus constructed for high intrinsic photosynthetic and vascular flux capacity even under growth chamber conditions that may not permit full utilization of this potential. Conversely, the Swedish ecotype was less tolerant of low growth light intensity than the Italian ecotype, with smaller rosette areas and lesser aboveground biomass accumulation in low light-grown plants. Foliar vein density and stomatal density were both enhanced by high growth light intensity with no significant difference between ecotypes, and the ratio of water to sugar conduits was also similar between the two ecotypes during light acclimation. These findings add to the understanding of the foliar vasculature’s role in plant photosynthetic acclimation and adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CC:

Companion cell

HL:

High light

LL:

Low light

PC:

Phloem parenchyma cell

PFD:

Photon flux density

SE:

Sieve element

TE:

Tracheary element

References

  • Adams WW III, Amiard VSE, Muek KE, Turgeon R, Demmig-Adams B. In: van der Est A (2005) Phloem loading type and photosynthetic acclimation to light. In: Bruce D (ed) Photosynthesis: fundamental aspects to global perspectives. Allen Press, Lawrence, KS, pp 814–816

    Google Scholar 

  • Adams WW III, Watson AM, Mueh KE, Amiard V, Turgeon R, Ebbert V, Logan BA, Combs AF, Demmig-Adams B (2007) Photosynthetic acclimation in the context of structural constraints to carbon export from leaves. Photosynth Res 94:455–466

    Article  CAS  PubMed  Google Scholar 

  • Adams WW III, Cohu CM, Muller O, Demmig-Adams B (2013) Foliar phloem infrastructure in support of photosynthesis. Front Plant Sci 4:194

    PubMed  PubMed Central  Google Scholar 

  • Adams WW III, Cohu CM, Amiard V, Demmig-Adams B (2014) Associations between phloem-cell wall ingrowths in minor veins and maximal photosynthesis rate. Front Plant Sci 5:24

    Google Scholar 

  • Adams WW III, Stewart JJ, Cohu CM, Muller O, Demmig-Adams B (2016) Habitat temperature and precipitation of Arabidopsis thaliana ecotypes determine the response of foliar vasculature, photosynthesis, and transpiration to growth temperature. Front Plant Sci 7:1026

    Article  PubMed  PubMed Central  Google Scholar 

  • Ågren J, Schemske DW (2012) Reciprocal transplants demonstrate strong adaptive differentiation of the model organism Arabidopsis thaliana in its native range. New Phytol 194:1112–1122

    Article  PubMed  Google Scholar 

  • Ågren J, Oakley CG, McKay JK, Lovell JT, Schemske DW (2013) Genetic mapping of adaptation reveals fitness tradeoffs in Arabidopsis thaliana. Proc Natl Acad Sci USA 110:21077–21082

    Article  PubMed Central  Google Scholar 

  • Ågren J, Oakley CG, Lundemo S, Schemske DW (2017) Adaptive divergence in flowering time among natural populations of Arabidopsis thaliana: Estimates of selection and QTL mapping. Evol Int J Org Evol 71:550–564

    Article  Google Scholar 

  • Akiyama R, Ågren J (2012) Magnitude and timing of leaf damage affect seed production in a natural population of Arabidopsis thaliana (Brassicaceae). PLoS ONE 7:e30015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akiyama R, Ågren J (2014) Conflicting selection on the timing of germination in a natural population of Arabidopsis thaliana. J Evol Biol 27:193–199

    Article  CAS  PubMed  Google Scholar 

  • Alonso-Blanco C, Gomez-Mena C, Llorente F, Koornneef M, Salinas J, Martinez-Zapater JM (2005) Genetic and molecular analyses of natural variation indicate CBF2 as a candidate for underlying a freezing tolerance quantitative trait locus in Arabidopsis. Plant Physiol 139:1304–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amiard V, Mueh KE, Demmig-Adams B, Ebbert V, Turgeon R, Adams WW III (2005) Anatomical and photosynthetic acclimation to the light environment in species with differing mechanisms of phloem loading. Proc Natl Acad Sci USA 102:12968–12973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amiard V, Demmig-Adams B, Mueh KE, Turgeon R, Combs AF, Adams WW III (2007) Role of light and jasmonic acid signaling in regulating foliar phloem cell wall ingrowth development. New Phytol 173:722–731

    Article  CAS  PubMed  Google Scholar 

  • Anderson JM, Chow WS, Park YI (1995) The grand design of photosynthesis: acclimation of the photosynthetic apparatus to environmental cues. Photosynth Res 46:129–139

    Article  CAS  PubMed  Google Scholar 

  • Bailey S, Horton P, Walters RG (2004) Acclimation of Arabidopsis thaliana to the light environment: the relationship between photosynthetic function and chloroplast composition. Planta 218:793–802

    Article  CAS  PubMed  Google Scholar 

  • Botto JF (2015) Plasticity to simulated shade is associated with altitude in structured populations of Arabidopsis thaliana. Plant Cell Environ 38:1321–1332

    Article  PubMed  Google Scholar 

  • Carins Murphy MR, Jordan GJ, Brodribb TJ (2012) Differential leaf expansion can enable hydraulic acclimation to sun and shade. Plant Cell Environ 35:1407–1418

    Article  PubMed  Google Scholar 

  • Cohu CM, Muller O, Demmig-Adams B, Adams WW III (2013a) Minor loading vein acclimation for three Arabidopsis thaliana ecotypes in response to growth under different temperature and light regimes. Front Plant Sci 4:240

    PubMed  PubMed Central  Google Scholar 

  • Cohu CM, Muller O, Stewart JJ, Demmig-Adams B, Adams WW III (2013b) Association between minor loading vein architecture and light- and CO2-saturated rates of photosynthetic oxygen evolution among Arabidopsis thaliana ecotypes from different latitudes. Front Plant Sci 4:264

    PubMed  PubMed Central  Google Scholar 

  • Cohu CM, Muller O, Demmig-Adams B, Adams WW III (2014a) Leaf anatomical and photosynthetic acclimation to cool temperature and high light in two winter versus two summer annuals. Physiol Plant 152:164–173

    Article  CAS  PubMed  Google Scholar 

  • Cohu CM, Lombardi E, Adams WW III, Demmig-Adams B (2014b) Increased nutritional quality of plants for long-duration spaceflight missions through choice of plant variety and manipulation of growth conditions. Acta Astronaut 94:799–806

    Article  CAS  Google Scholar 

  • Cookson SJ, Granier C (2006) A dynamic analysis of the shade-induced plasticity in Arabidopsis rosette leaf development reveals new components of the shade-adaptive response. Ann Bot 97:443–452

    Article  PubMed  PubMed Central  Google Scholar 

  • Delieu T, Walker DA (1981) Polarographic measurement of photosynthetic oxygen evolution by leaf discs. New Phytol 89:165–178

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Ebbert V, Mellman DL, Mueh KE, Schaffer L, Funk C, Zarter CR, Adamska I, Jansson S, Adams WW III (2006) Modulation of PsbS and flexible versus sustained energy dissipation by light environment in different species. Physiol Plant 127:670–680

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Cohu CM, Muller O, Adams WW III (2012) Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. Photosynth Res 113:75–88

    Article  CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Stewart JJ, Adams WW III (2017) Environmental regulation of intrinsic photosynthetic capacity: an integrated view. Curr Opin Plant Biol 37:34–41

    Article  CAS  PubMed  Google Scholar 

  • Dittmar EL, Oakley CG, Ågren J, Schemske DW (2014) Flowering time QTL in natural populations of Arabidopsis thaliana and implications for their adaptive value. Mol Ecol 23:4291–4303

    Article  PubMed  Google Scholar 

  • Dumlao MR, Darehshouri A, Cohu CM, Muller O, Mathias J, Adams WW III, Demmig-Adams B (2012) Low temperature acclimation of photosynthetic capacity and leaf morphology in the context of phloem loading type. Photosynth Res 113:181–189

    Article  CAS  PubMed  Google Scholar 

  • Evans JR, Poorter H (2001) Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ 24:755–767

    Article  CAS  Google Scholar 

  • Flexas J, Scoffoni C, Gago J, Sack L (2013) Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination. J Exp Bot 64:3965–3981

    Article  CAS  PubMed  Google Scholar 

  • Gehan MA, Park S, Gilmour SJ, An C, Lee C-M, Thomashow MF (2015) Natural variation in the C-repeat binding factor cold response pathway correlates with local adaptation of Arabidopsis ecotypes. Plant J 84:682–693

    Article  CAS  PubMed  Google Scholar 

  • Gilmour SJ, Fowler SG, Thomashow MF (2004) Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol Biol 54:767–781

    Article  CAS  PubMed  Google Scholar 

  • Givnish TJ (1988) Adaptation to sun and shade: a whole-plant perspective. Aust J Plant Physiol 15:63–92

    Article  Google Scholar 

  • Goldstein G, Santiago LS, Campanello PI, Avalos G, Zhang Y-J, Villagra M (2016) Facing shortage or excessive light: how tropical and subtropical trees adjust their photosynthetic behavior and life history traits to a dynamic forest environment. In: Goldstein G, Santiago LS (eds) Tropical tree physiology: adaptations and responses in a changing environment, tree physiology, vol 6. Springer, Netherlands, pp 319–336

    Chapter  Google Scholar 

  • Grillo MA, Li C, Hammond M, Wang L, Schemske DW (2013) Genetic architecture of lowering time differentiation between locally adapted populations of Arabidopsis thaliana. New Phytol 197:1321–1331

    Article  CAS  PubMed  Google Scholar 

  • Hacke UG, Sperry JS (2001) Functional and ecological xylem anatomy. Perspect Plant Ecol Evol Syst 4:97–115

    Article  Google Scholar 

  • Hacke UG, Jacobsen AL, Pratt RB (2009) Xylem function of arid-land shrubs from California, USA: an ecological and evolutionary analysis. Plant Cell Environ 32:1324–1333

    Article  CAS  PubMed  Google Scholar 

  • Hanba YT, Kogami H, Terashima I (2002) The effect of growth irradiance on leaf anatomy and photosynthesis in Acer species differing in light demand. Plant Cell Environ 25:1021–1030

    Article  Google Scholar 

  • Hargrave KR, Kolb KJ, Ewers FW, Davis SD (1994) Conduit diameter and drought-induced embolism in Salvia mellifera Greene (Labiatae). New Phytol 126:695–705

    Article  Google Scholar 

  • Haritatos E, Medville R, Turgeon R (2000) Minor vein structure and sugar transport in Arabidopsis thaliana. Planta 211:105–111

    Article  CAS  PubMed  Google Scholar 

  • Hüner NPA, Bode R, Dahal K, Hollis L, Rosso D, Krol M, Ivanov AG (2012) Chloroplast redox imbalance governs phenotypic plasticity: the “grand design of photosynthesis” revisited. Front Plant Sci 3:255

    Article  PubMed  PubMed Central  Google Scholar 

  • Hüner NPA, Dahal K, Bode R, Kurepin LV, Ivanov AG (2016) Photosynthetic acclimation, vernalization, crop productivity and ‘the grand design of photosynthesis’. J Plant Physiol 203:29–43

    Article  PubMed  Google Scholar 

  • Ivanova LA, Chanchikova AG, Ronzhina DA, Zolotareva NV, Kosulnikov VV, Kadushnikov RM, Ivanov LA (2016) Acclimation to experimental climate warming in meadow plants of different functional types. Russ J Plant Physiol 63:849–860

    Article  CAS  Google Scholar 

  • James SA, Bell DT (2000) Influence of light availability on leaf structure and growth of two Eucalyptus globulus ssp. globulus provenances. Tree Physiol 20:1007–1018

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Dengler N (2004) Vein pattern development in adult leaves of Arabidopsis thaliana. Internatl J Plant Sci 165:231–242

    Article  Google Scholar 

  • Kang J, Zhang H, Sun T, Shi Y, Want J, Zhang B, Want Z, Zhou Y, Gu H (2013) Natural variation of C-repeat-binding factor (CBFs) genes is a major cause of divergence in freezing tolerance among a group of Arabidopsis thaliana populations along the Yangtze River in China. New Phytol 199:1069–1080

    Article  CAS  PubMed  Google Scholar 

  • Kurepin LV, Dahal KP, Savitch LV, Singh J, Bode R, Ivanov AG, Hurry V, Hüner NPA (2013) Role of CBFs as integrators of chloroplast redox, phytochrome, and plant hormone signaling during cold acclimation. Int J Mol Sci 14:12729–12763

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra Y, Jänkänpää HJ, Kiss AZ, Funk C, Schröder WP, Jansson S (2012) Arabidopsis plants grown in the field and climate chambers significantly differ in leaf morphology and photosystem components. BMC Plant Biol 12:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mojica JP, Mullen J, Lovel JT, Monroe JG, Paul JR, Oakley CG, McKay JK (2016) Genetics of water use physiology in locally adapted Arabidopsis thaliana. Plant Sci 251:12–22

    Article  CAS  PubMed  Google Scholar 

  • Monroe JG, McGovern C, Lasky JR, Grogan K, Beck J, McKay JK (2016) Adaptation to warmer climates by parallel functional evolution of CBF genes in Arabidopsis thaliana. Mol Evol 25:3632–3644

    CAS  Google Scholar 

  • Muller O, Stewart JJ, Cohu CM, Polutchko SK, Demmig-Adams B, Adams WW III (2014a) Leaf architectural, vascular, and photosynthetic acclimation to temperature in two biennials. Physiol Plant 152:763–772

    Article  CAS  PubMed  Google Scholar 

  • Muller O, Cohu CM, Stewart JJ, Protheroe JA, Demmig-Adams B, Adams WW III (2014b) Association between photosynthesis and contrasting features of minor veins in leaves of summer annuals loading phloem via symplastic versus apoplastic routes. Physiol Plant 152:174–183

    Article  CAS  PubMed  Google Scholar 

  • Muramatsu N, Hiraoka K (2008) Hydraulic conductance and xylem anatomy in fruit tree shoots. J Jap Soc Hort Sci 77:122–127

    Article  Google Scholar 

  • Nardini A, Gortan E, Salleo S (2005) Hydraulic efficiency of the leaf venation system in sun- and shade-adapted species. Func Plant Biol 32:953–961

    Article  Google Scholar 

  • Niinemets U (2006) The controversy over traits conferring shade-tolerance in trees: ontogenetic changes revisited. J Ecol 94:464–470

    Article  Google Scholar 

  • North GB, Lynch FH, Maharaj FDR, Phillips CA, Woodside WT (2013) Leaf hydraulic conductance for a tank bromeliad: axial and radial pathways for moving and conserving water. Front Plant Sci 4:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Oakley CG, Ågren J, Atchison RA, Schemske DW (2014) QTL mapping of freezing tolerance: links to fitness and adaptive trade-offs. Mol Ecol 23:4304–4315

    Article  PubMed  Google Scholar 

  • Oakley CG, Ågren J, Schemske DW (2015) Heterosis and outbreeding depression in crosses between natural populations of Arabidopsis thaliana. Heredity 115:73–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pino M-T, Skinner JS, Jeknić Z, Hayes PM, Soeldner AH, Thomashow MF, Chen THH (2008) Ectopic ATCBF1 over-expression enhances freezing tolerance and induces cold acclimation-associated physiological modifications in potato. Plant Cell Environ 31:393–406

    Article  CAS  PubMed  Google Scholar 

  • Pons TL (2012) Interaction of temperature and irradiance effects on photosynthetic acclimation in two accessions of Arabidopsis thaliana. Photosynth Res 113:207–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poorter L, McDonald I, Alarcón A, Fichtler E, Licona J-C, Peña-Claros M, Sterck F, Villegas Z, Sass-Klaassen U (2010) The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol 185:481–492

    Article  PubMed  Google Scholar 

  • Postma FM, Ågren J (2015) Maternal environment affects the genetic basis of seed dormancy in Arabidopsis thaliana. Mol Ecol 24:785–797

    Article  CAS  PubMed  Google Scholar 

  • Postma FM, Ågren J (2016) Early life stages contribute strongly to local adaptation in Arabidopsis thaliana. Proc Natl Acad Sci USA 113:7590–7595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Postma FM, Lundemo S, Ågren J (2016) Seed dormancy cycling and mortality differ between two locally adapted populations of Arabidopsis thaliana. Ann Bot 117:249–256

    PubMed  Google Scholar 

  • Sack L, Scoffoni C (2013) Leaf venation: structure, function, development, evolution, ecology, and applications in the past, present and future. New Phytol 198:983–1000

    Article  PubMed  Google Scholar 

  • Sack L, Scoffoni C, McKown AD, Frole K, Rawls M, Havran JC, Tran H, Tran T (2012) Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nat Commun 3:837

    Article  PubMed  Google Scholar 

  • Savitch LV, Allard G, Seki M, Robert LS, Tinker NA, Huner NPA, Shinozaki K, Singh J (2005) The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. Plant Cell Physiol 46:1525–1539

    Article  CAS  PubMed  Google Scholar 

  • Sperry JS, Hacke UG, Pittermann J (2006) Size and function in conifer tracheids and angiosperm vessels. Am J Bot 93:1490–1500

    Article  PubMed  Google Scholar 

  • Sterck FJ, Martínez-Vilalta J, Mencuccini M, Cochard H, Gerrits P, Zweifel R, Herrero A, Korhonen JFJ, Llorens P, Nikinmaa E, Nolè A, Poyatos R, Ripullone F, Sass-Klaassen U (2012) Understanding trait interactions and their impacts on growth in Scots pine branches across Europe. Funct Ecol 26:541–549

    Article  Google Scholar 

  • Stewart JJ, Adams WW III, Cohu CM, Polutchko SK, Lombardi EM, Demmig-Adams B (2015) Differences in light-harvesting, acclimation to growth light environment, and leaf structural development between Swedish and Italian ecotypes of Arabidopsis thaliana. Planta 242:1277–1290

    Article  CAS  PubMed  Google Scholar 

  • Stewart JJ, Demmig-Adams B, Cohu CM, Wenzl CA, Muller O, Adams WW III (2016) Growth temperature impact on leaf form and function in Arabidopsis thaliana ecotypes from northern and southern Europe. Plant Cell Environ 39:1549–1558

    Article  CAS  PubMed  Google Scholar 

  • Stewart JJ, Polutchko SK, Adams WW III, Cohu CM, Wenzl CA, Demmig-Adams B (2017) Light, temperature, and tocopherol status influence foliar vascular anatomy and leaf function in Arabidopsis thaliana. Physiol Plant 160:98–110

    Article  CAS  PubMed  Google Scholar 

  • Thomas FM (2014) Ecology of phreatophytes. In: Lüttge U, Beyschlag W, Cushman J (eds) Progress in botany 75. Spinger, Berlin, pp 335–375

    Chapter  Google Scholar 

  • Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154:571–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhl D, Mosbrugger V (1999) Leaf venation density as a climate and environmental proxy: a critical review and new data. Paleogeogr Paleoclimatol Paleoecol 149:15–26

    Article  Google Scholar 

  • Walters RG, Horton P (1994) Acclimation of Arabidopsis thaliana to the light environment: changes in composition of the photosynthetic apparatus. Planta 195:248–256

    Article  CAS  Google Scholar 

  • Weraduwage SM, Chen J, Anozie FC, Morales A, Weise SE, Sharkey TD (2015) The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana. Front Plant Sci 6:167

    Article  PubMed  PubMed Central  Google Scholar 

  • Woodruff DR, Meinzer FC, Lachenbruch B (2008) Height-related trends in xylem anatomy and shoot hydraulic characteristics in a tall conifer: safety versus efficiency in water transport. New Phytol 180:90–99

    Article  CAS  PubMed  Google Scholar 

  • Wylie RB (1951) Principles of foliar organization shown by sun-shade leaves from ten species of deciduous dicotyledonous trees. Am J Bot 38:355–361

    Article  Google Scholar 

  • Zwieniecki MA, Boyce CK, Holbrook NM (2004) Hydraulic limitations imposed by crown placement determine final size and shape of Quercus rubra L. leaves. Plant Cell Environ 27:357–365

    Article  Google Scholar 

Download references

Acknowledgements

We thank Profs. Douglas Schemske and Jon Ågren for providing seed of the Arabidopsis ecotypes, and Coleman A. Wenzl for assistance with HPLC analysis. This work was supported by the National Science Foundation, Division of Environmental Biology (Award Number DEB-1022236 to BD-A and WWA), and the University of Colorado at Boulder.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Demmig-Adams.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stewart, J.J., Polutchko, S.K., Adams, W.W. et al. Acclimation of Swedish and Italian ecotypes of Arabidopsis thaliana to light intensity. Photosynth Res 134, 215–229 (2017). https://doi.org/10.1007/s11120-017-0436-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-017-0436-1

Keywords

Navigation