Skip to main content
Log in

The identification of IsiA proteins binding chlorophyll d in the cyanobacterium Acaryochloris marina

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The bioavailable iron in many aquatic ecosystems is extremely low, and limits the growth and photosynthetic activity of phytoplankton. In response to iron limitation, a group of chlorophyll-binding proteins known as iron stress-induced proteins are induced and serve as accessory light-harvesting components for photosystems under iron limitation. In the present study, we investigated physiological features of Acaryochloris marina in response to iron-deficient conditions. The growth doubling time under iron-deficient conditions was prolonged to ~3.4 days compared with 1.9 days under normal culture conditions, accompanied with dramatically decreased chlorophyll content. The isolation of chlorophyll-binding protein complexes using sucrose density gradient centrifugation shows six main green bands and three main fluorescence components of 712, 728, and 748 nm from the iron-deficient culture. The fluorescence components of 712 and 728 nm co-exist in the samples collected from iron-deficient and iron-replete cultures and are attributed to Chl d-binding accessory chlorophyll-binding antenna proteins and also from photosystem II. A new chlorophyll-binding protein complex with its main fluorescence peak at 748 nm was observed and enriched in the heaviest fraction from the samples collected from the iron-deficient culture only. Combining western blotting analysis using antibodies of CP47 (PSII), PsaC (PSI) and IsiA and proteomic analysis on an excised protein band at ~37 kDa, the heaviest fraction (−F6) isolated from iron-deficient culture contained Chl d-bound PSI–IsiA supercomplexes. The PSII-antenna supercomplexes isolated from iron-replete conditions showed two fluorescence peaks of 712 and 728 nm, which can be assigned as 6-transmembrane helix chlorophyll-binding antenna and photosystem II fluorescence, respectively, which is supported by protein analysis of the fractions (F5 and F6).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersen RA, Berges JA, Harrison PJ, Watanabe MM (2005) Appendix A—recipes for freshwater and seawater media. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, San Diego, pp 429–538

    Google Scholar 

  • Behrenfeld MJ, Milligan AJ (2013) Photophysiological expressions of iron stress in phytoplankton. Annu Rev Mar Sci 5:217–246

  • Berera R, van Stokkum IHM, Kennis JTM, van Grondelle R, Dekker JP (2010) The light-harvesting function of Carotenoids in the cyanobacterial stree-inducible IsiA complex. Chem Phys 373:65–70

    Article  CAS  Google Scholar 

  • Bibby TS, Nield J, Barber J (2001) Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature 412:743–745

    Article  CAS  PubMed  Google Scholar 

  • Bibby TS, Mary I, Nield J, Partensky F, Barber J (2003) Low-light-adapted Prochlorococcus species possess specific antennae for each photosystem. Nature 424:1051–1054

    Article  CAS  PubMed  Google Scholar 

  • Boekema EJ, Hifney A, Yakushevska AE, Piotrowski M, Keegstra W, Berry S, Michel KP, Pistorius EK, Kruip J (2001) A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria. Nature 412:745–748

    Article  CAS  PubMed  Google Scholar 

  • Boyd PW, Jickells T, Law CS, Blain S, Boyle EA, Buesseler KO, Coale KH, Cullen JJ, de Baar HJW, Follows M, Harvey M, Lancelot C, Levasseur M, Owens NPJ, Pollard R, Rivkin RB, Sarmiento J, Schoemann V, Smetacek V, Takeda S, Tsuda A, Turner S, Watson AJ (2007) Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315:612–617

    Article  CAS  PubMed  Google Scholar 

  • Chauhan D, Folea IM, Jolley CC, Kouril R, Lubner CE, Lin S, Kolber D, Wolfe-Simon F, Golbeck JH, Boekema EJ, Fromme P (2011) A novel photosynthetic strategy for adaptation to low-iron aquatic environments. BioChemistry 50:686–692

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Bibby TS (2005) Photosynthetic apparatus of antenna-reaction centres supercomplexes in oxyphotobacteria: insight through significance of Pcb/IsiA proteins. Photosynth Res 86:165–173

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Quinnell RG, Larkum AWD (2002a) The major light-harvesting pigment proteins in Acaryochloris marina. FEBS Lett 514:149–152

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Quinnell RG, Larkum AWD (2002b) Chlorophyll d as the major photopigment in Acaryochloris marina. J Porphyrins Phthalocyanines 6:763–773

    Article  CAS  Google Scholar 

  • Chen M, Bibby TS, Nield J, Larkum AWD, Barber J (2005a) Iron deficiency induces a chlorophyll d-binding Pcb antenna system around photosystem I in Acaryochloris marina. Biochim Biophys Acta 1708:367–374

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Hiller RG, Howe CJ, Larkum AWD (2005b) Unique origin and lateral transfer of prokaryotic chlorophyll-b and chlorophyll-d light-harvesting systems. Mol Biol Evol 22:21–28

    Article  PubMed  Google Scholar 

  • Chen M, Telfer A, Lin S, Pascal A, Larkum AWD, Barber J, Blankenship RE (2005c) The nature of the photosystem II reaction centre in the chlorophyll d-containing prokaryote, Acaryochloris marina. Photochem Photobiol Sci 4:1060–1064

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Bibby TS, Nield J, Larkum AWD, Barber J (2005d) Structure of a large photosystem II supercomplex from Acaryochloris marina. FEBS Lett 579:1306–1310

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Zhang Y, Blankenship RE (2008) Nomenclature for membrane-bound light-harvesting complexes of cyanobacteria. Photosynth Res 95:147–154

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Li Y, Birch D, Willows RD (2012) A cyanobacterium that contains chlorophyll f—a red-absorbing photopigment. FEBS Lett 586:3249–3254

    Article  CAS  PubMed  Google Scholar 

  • Chen H-YS, Liberton M, Pakrasi HB, Niedzwiedzki DM (2017) Reevaluating the mechanism of excitation energy regulation in iron-starved cyanobacteria. Biochim Biophys Acta 1858:249–258

    Article  CAS  PubMed  Google Scholar 

  • Falk S, Samson G, Bruce D, Huner NPA, Laudenbach DE (1995) Functional analysis of the iron-stress induced CP43′ polypeptide of PSII in the cyanobacterium Synechococcus sp. PCC 7942. Photosynth Res 45:51–60

    Article  CAS  PubMed  Google Scholar 

  • Geider RJ, La Roche J (1994) The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea. Photosynth Res 39:275–301

    Article  CAS  PubMed  Google Scholar 

  • Guikema JA, Sherman LA (1984) Influence of iron deprivation on the membrane composition of Anacystis nidulans. Plant Physiol 74:90–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Q, Miyashita H, Iwasaki I, Kurano N, Miyachi S, Iwaki M, Itoh S (1998) A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc Natl Acad Sci USA 95:13319–13323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imai A, Fukushima T, Matsushige K (1999) Effects of iron limitation and aquatic humic substances on the growth of Microcystis aeruginosa. Can J Fish Aquat Sci 56:1929–1937

    Article  CAS  Google Scholar 

  • Ivanov AG, Krol M, Sveshnikov D, Selstam E, Sandström S, Koochek M, Park YI, Vasil’ev S, Bruce D, Öquist G, Huner NPA (2006) Iron deficiency in cyanobacteria causes monomerization of photosystem I trimers and reduces the capacity for state transitions and the effective absorption cross section of photosystem I in vivo. Plant Physiol 141:1436–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang HB, Lou WJ, Ke WT, Song WY, Price NM, Qiu BS (2015) New insights into iron acquisition by cyanobacteria: an essential role for ExbB-ExbD complex in inorganic iron uptake. ISME J 9:297–309

  • Keren N, Aurora R, Pakrasi HB (2004) Critical roles of bacterioferritins in iron storage and proliferation of cyanobacteria. Plant Physiol 135:1666–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouřil R, Arteni AA, Lax J, Yeremenko N, D’Haene S, Rögner M, Matthijs HCP, Dekker JP, Boekema EJ (2005) Structure and functional role of supercomplexes of IsiA and photosystem I in cyanobacterial photosynthesis. FEBS Lett 579:3253–3257

    Article  PubMed  Google Scholar 

  • La Roche J, Van der Staay GWM, Partensky F, Ducret A, Aebersold R, Li R, Golden SS, Hiller RG, Wrench PM, Larkum AWK, Green BR (1996) Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteins. Proc Natl Acad Sci USA 93:15244–15248

    Article  CAS  PubMed  Google Scholar 

  • Li ZK, Dai GZ, Juneau P, Qiu BS (2016) Capsular polysaccharides facilitate enhanced iron acquisition by the colonial cyanobacterium Microcystis sp. isolated from a freshwater lake. J Phycol 52:105–115

    Article  CAS  PubMed  Google Scholar 

  • Liu SW, Qiu BS (2012) Different responses of photosynthesis and flow cytometric signals to iron limitation and nitrogen source in coastal and oceanic Synechococcus strains (Cyanophyceae). Mar Biol 159:519–532

    Article  CAS  Google Scholar 

  • Loughlin P, Lin Y, Chen M (2013) Chlorophyll d and Acaryochloris marina: current status. Photosynth Res 116:277–293

    Article  CAS  PubMed  Google Scholar 

  • Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the northeast Pacific subarctic. Nature 331:341–343

    Article  CAS  Google Scholar 

  • McKay RML, Bullerjahn GS, Porta D, Brown ET, Sherrell RM, Smutka TM, Sterner RW, Twiss MR, Whlhelm SW (2004) Consideration of the bioavailability of iron in the North American Great Lakes: development of novel approaches toward understanding iron biogeochemistry. Aquat Ecosyst Health Manag 7:475–490

    Article  CAS  Google Scholar 

  • Melkozernov AN, Bibby TS, Lin S, Barber J, Blankenship RE (2003) Time-resolved absorption and emission show that the CP43′ antenna ring of iron-stressed Sydnechocystis sp. PCC6803 is efficiently coupled to the photosystem I reaction center core. Biochem 42:3893–3903

    Article  CAS  Google Scholar 

  • Murray JW, Duncan J, Barber J (2006) CP43-like chlorophyll binding proteins: structural and evolutionary implications. Trends Plant Sci 11:152–158

    Article  CAS  PubMed  Google Scholar 

  • Nodop A, Pietsch D, Höcker R, Becker A, Pistorius EK, Forchhammer K, Michel KP (2008) Transcript profiling reveals new insights into the acclimation of the mesophilic fresh-water cyanobacterium Synechococcus elongatus PCC 7942 to iron starvation. Plant Physiol 147:747–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noinaj N, Guillier M, Barnard TJ, Buchanan SK (2010) TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol 64:43–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palenik B, Haselkorn R (1992) Multiple evolutionary origins of prochlorophytes, the chlorophyll b-containing prokaryotes. Nature 355:265–267

    Article  CAS  PubMed  Google Scholar 

  • Peers G, Price NM (2004) A role for manganese in superoxide dismutases and growth of iron-deficient diatoms. Limnol Oceanogr 49:1774–1783

    Article  CAS  Google Scholar 

  • Peers G, Price NM (2006) Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature 441:341–344

    Article  CAS  PubMed  Google Scholar 

  • Schrader PS, Milligan AJ, Behrenfeld MJ (2011) Surplus photosynthetic antennae complexes underlie diagnostics of iron limitation in a cyanobacterium. PLoS ONE 6:e18753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh AK, Sherman LA (2006) Iron-independent dynamics of IsiA production during the transition to stationary phase in the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett 256:159–164

    Article  CAS  PubMed  Google Scholar 

  • Sterner RW, Smutka TM, McKay RML, Qin XM, Brown ET, Sherrell RM (2004) Phosphorus and trace metal limitation of algae and bacteria in Lake Superior. Limnol Oceanogr 49:495–507

    Article  CAS  Google Scholar 

  • Swingley WD, Hohmann-Marriott MF, Le Olson T, Blankenship RE (2005) Effect of iron on growth and ultrastructure of Acaryochloris marina. Appl Environ Microbiol 71:8606–8610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swingley WD, Chen M, Cheung PC, Conrad AL, Dejesa LC, Hao J, Honchak BM, Karbach LE, Kurdoglu A, Lahiri S, Mastrian SD, Miyashita H, Page L, Ramakrishna P, Satoh S, Sattley WM, Shimada Y, Taylor HL, Tome T, Tsuchiya T, Wang ZT, Raymond J, Mimuro M, Blankenship RE, Touchman JW (2008) Niche adaptation and genome expansion in the chlorophyll d-producing cyanobacterium Acaryochloris marina. Proc Natl Acad Sci USA 105:2005–2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tetenkin VL, Golitsin VM, Gulyaev BA (1998) Stress protein of cyanobacteria CP36: interaction with photoactive complexes and formation of supramolecular structures. BioChemistry 63:584–591

    CAS  PubMed  Google Scholar 

  • Tomo T, Okubo T, Akimoto S, Yokono M, Miyashita H, Tsuchiya T, Noguchi T, Mimuro M (2007) Identification of the special pair of photosystem II in a chlorophyll d-dominated cyanobacterium. Proc Natl Acad Sci USA 104:7283–7288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Jantaro S, Lu B, Majeed W, Bailey M, He Q (2008) The high light-inducible polypeptides stabilize trimeric photosystem I complex under high light conditions in Synechocystis PCC 6803. Plant Physiol 147:1239–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson A, Boulay C, Wilde A, Kerfeld CA, Kirilovsky D (2007) Light-induced energy dissipation in iron-starved cyanobacteria: roles of OCP and IsiA proteins. Plant Cell 19:656–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Chen M, Church WB, Lau KW, Larkum AWD, Jermiin LS (2010) The molecular structure of the IsiA-photosystem I supercomplex, modelled from high-resolution, crystal structures of photosystem I and the CP43 protein. Biochim Biophys Acta 1797:457–465

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Basic Research Program (973 Program, No. 2008CB418004) and the Fundamental Research Funds for the Central Universities (CCNU16KFY03). M.C holds Australia Research Council Future Fellows (FT120100464) and supported by ARC CE1400015.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Chen or Bao-Sheng Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZK., Yin, YC., Zhang, LD. et al. The identification of IsiA proteins binding chlorophyll d in the cyanobacterium Acaryochloris marina . Photosynth Res 135, 165–175 (2018). https://doi.org/10.1007/s11120-017-0379-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-017-0379-6

Keywords

Navigation