Skip to main content
Log in

Energy transfer in Anabaena variabilis filaments adapted to nitrogen-depleted and nitrogen-enriched conditions studied by time-resolved fluorescence

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Nitrogen is among the most important nutritious elements for photosynthetic organisms such as plants, algae, and cyanobacteria. Therefore, nitrogen depletion severely compromises the growth, development, and photosynthesis of these organisms. To preserve their integrity under nitrogen-depleted conditions, filamentous nitrogen-fixing cyanobacteria reduce atmospheric nitrogen to ammonia, and self-adapt by regulating their light-harvesting and excitation energy-transfer processes. To investigate the changes in the primary processes of photosynthesis, we measured the steady-state absorption and fluorescence spectra and time-resolved fluorescence spectra (TRFS) of whole filaments of the nitrogen-fixing cyanobacterium Anabaena variabilis at 77 K. The filaments were grown in standard and nitrogen-free media for 6 months. The TRFS were measured with a picosecond time-correlated single photon counting system. Despite the phycobilisome degradation, the energy-transfer paths within phycobilisome and from phycobilisome to both photosystems were maintained. However, the energy transfer from photosystem II to photosystem I was suppressed and a specific red chlorophyll band appeared under the nitrogen-depleted condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APC:

Allophycocyanin

Car:

Carotenoid

Chl:

Chlorophyll

FDAS:

Fluorescence decay-associated spectra

PC:

Phycocyanin

PS:

Photosystem

PBS:

Phycobilisome

TRFS:

Time-resolved fluorescence spectra

References

  • Akimoto S, Yokono M, Hamada F, Teshigahara A, Aikawa S, Kondo A (2012) Adaptation of light-harvesting systems of Arthrospira platensis to light conditions, probed by time-resolved fluorescence spectroscopy. Biochim Biophys Acta 1817:1483–1489

    Article  CAS  PubMed  Google Scholar 

  • Akimoto S, Yokono, A, Aikawa S, Kondo A (2013) Modification of energy transfer processes in the cyanobacterium Arthrospira platensis to adapt to light conditions, probed by time-resolved fluorescence spectroscopy. Photosynth Res 117:235–243

    Article  CAS  PubMed  Google Scholar 

  • Allen JF, Holmes NG (1986) A general model for regulation of photosynthetic unit function by protein phosphorylation. FEBS Lett 202:175–181

    Article  CAS  Google Scholar 

  • Allen MM, Smith AJ (1969) Nitrogen chlorosis in blue-green algae. Arch Microbiol 69:114–120

    CAS  Google Scholar 

  • Arba M, Aikawa S, Niki K, Yokono M, Kondo A, Akimoto S (2013) Differences in excitation energy transfer of Arthrospira platensis cells grown in seawater medium and freshwater medium, probed by time-resolved fluorescence spectroscopy. Chem Phys Lett 588:231–236

    Article  CAS  Google Scholar 

  • Berman-Frank I, Lundgren P, Falkowski P (2003) Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol 154:157–164

    Article  CAS  PubMed  Google Scholar 

  • Blankenship RE (2014) Molecular mechanisms of photosynthesis, 2nd edn. Wiley-Blackwell.

  • Boardman NK, Thome SW, Anderson JM (1966) Fluorescence properties of particles obtained by digitonin fragmentation of spinach chloroplasts. Proc Natl Acad Sci USA 56:586–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruce D, Biggins J, Steiner T, Thewalt M (1985) Mechanism of the light state transition in photosynthesis. IV. Picosecond fluorescence spectroscopy of Anacystis nidulans and Porphyridium cruentum in state 1 and state 2 at 77 K. Biochim Biophys Acta 806:237–246

    Article  CAS  Google Scholar 

  • Cobb HD, Myers J (1964) Comparative Studies of Nitrogen Fixation and Photosynthesis in Anabaena cylindrical. Am J Bot 51(7):753–762

    Article  CAS  Google Scholar 

  • Collier JL, Grossman AR (1992) Chlorosis induced by nutrient deprivation in Synechococcus sp. strain PCC 7942: Not all bleaching is the same. J Bacteriol 174:4718–4726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collier JL, Herbert SK, Fork DC, Grossman AR (1994) Changes in the cyanobacterial photosynthetic apparatus during acclimation to macronutrient deprivation. Photosynth Res 42:173–183

    Article  CAS  PubMed  Google Scholar 

  • Ehira S, Ohmori M (2006) NrrA, a nitrogen-responsive response regulator facilitates heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120. Mol Microbiol 59:1692–1703

    Article  CAS  PubMed  Google Scholar 

  • Fay P (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev 56:340–373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferimazova N, Felcmanova K, Setlikova E, Küpper H, Maldener I, Hauska G, Sediva B, Prasil O (2013) Regulation of photosynthesis during heterocyst differentiation in Anabaena sp strain PCC 7120 investigated in vivo at single-cell level by chlorophyll fluorescence kinetic microscopy. Photosynth Res 116:79–91

    Article  CAS  PubMed  Google Scholar 

  • Fogg GE (2001) Algal Adaptation to Stress. In: Rai LC, Gaur JP (eds) Algal Adaptation to Environmental Stresses: Physiological, Biochemical and Molecular Mechanism. Springer-Verlag, Berlin/Heidelberg, pp 135–171

    Google Scholar 

  • Gantt E (1975) Phycobilisomes: Light-harvesting pigment complexes. Bioscience 25:781–788

    Article  CAS  Google Scholar 

  • Gantt E, Conti SF (1969) Ultrastructure of blue-green algae. J Bacteriol 97:1486–1493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goedheer JC (1972) Fluorescence in relation to photosynthesis. Ann Rev Plant Physiol 23:87–112

    Article  CAS  Google Scholar 

  • Görl M, Sauer J, Baier T, Forchhammer K (1998) Nitrogen-starvation-induced chlorosis in Synechococcus PCC 7942: adaptation to long-term survival. Microbiology 144:2449–2458

    Article  PubMed  Google Scholar 

  • Govindjee, Yang L (1966) Structure of the red fluorescence band in chloroplasts. J Gen Physiol 49:763–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govindjee (2004) Chlorophyll a fluorescence: A bit of basics and history. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 1–42

    Google Scholar 

  • Grossman AR, Schaefer MR, Chiang GG, Collier JL (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 57:725–749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grossman AR, Schaefer MR, Chiang GG, Collier JL (1994) The responses of cyanobacteria to environmental conditions. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 641–675

    Chapter  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauß N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Mella-Herrera RA, Golden JW (2010) Cyanobacterial heterocysts. Cold Spring Harb Perspect Biol 2:a000315

    Article  PubMed  PubMed Central  Google Scholar 

  • Laudenbach DE, Straus NA (1988) Characterization of a cyanobacterial iron stress-induced gene similar to psbC. J Bacteriol 170:5018–5026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ley AC, Butler WL (1976) Efficiency of energy transfer from photosystem 11 to photosystem 1 in Porphyridium cruentum. Proc Natl Acad Sci USA 73:3957–3960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maldener I, Muro-Pastor AM (2010) Cyanobacterial heterocysts. In: Encyclopedia of life sciences (ELS). Wiley, New York

    Google Scholar 

  • Michel KP, Pistorius EK (2004) Adaptation of the photosynthetic electron transport chain in cyanobacteria to iron deficiency: The function of IdiA and IsiA. Physiol Plant 120:36–50

    Article  CAS  PubMed  Google Scholar 

  • Mimuro M, Katoh T (1991) Carotenoids in photosynthesis: absorption, transfer and dissipation of light energy. Pure Appl Chem 63:23–130

    Article  Google Scholar 

  • Mimuro M, Akimoto S, Tomo T, Yokono M, Miyashita H, Tsuchiya T (2007) Delayed fluorescence observed in the nanosecond time region at 77 K originates directly from the photosystem II reaction center. Biochim Biophys Acta 1767: 327–334

    Article  CAS  PubMed  Google Scholar 

  • Mullineaux CW (1992) Excitation energy transfer from phycobilisomes to photosystem I in a cyanobacterium. Biochim Biophys Acta 1100:285–292

    Article  CAS  Google Scholar 

  • Murata N, Satoh K (1986) Absorption and fluorescence emission by intact cells, chloroplasts, and chlorophyll–protein complexes. In: Govindjee Amesz J, Fork DC (eds) Light emission by plants and bacteria, pp 137–159. Academic Press

  • Nakayama K, Yamaoka T, Katoh S (1979) Chromatographic separation of photosystems I and II from the thylakoid membrane isolated from a thermophilic blue-green alga. Plant Cell Physiol 20:1565–1576

    Article  CAS  Google Scholar 

  • Niki K, Aikawa S, Yokono M, Kondo A, Akimoto S (2015) Differences in energy transfer of a cyanobacterium, Synechococcus sp. PCC 7002, grown in different cultivation media. Photosynth Res 125:201–210

    Article  CAS  PubMed  Google Scholar 

  • Onishi A, Aikawa S, Kondo A, Akimoto S (2015) Energy transfer in Anabaena variabilis filaments under nitrogen depletion, studied by time-resolved fluorescence. Photosynth Res 125:191–199

  • Pålsson LO, Flemming C, Gobets B, Grondelle R, Dekker JP, Schlodder E (1998) Energy transfer and charge separation in photosystem I: P700 oxidation upon selective excitation of the long-wavelength antenna chlorophylls of Synechococcus elongates. Biophys J 74:2611–2622

    Article  PubMed  PubMed Central  Google Scholar 

  • Peter P, Sarma AP, Hasan MDA, Murthy SDS (2010) Studies on the Impact of nitrogen starvation on the photosynthetic pigments through spectral properties of the cyanobacterium, Spirulina platensis: Identification of target phycobiliprotein under nitrogen chlorosis. Bot Res Intl 3: 30–34

    CAS  Google Scholar 

  • Postgate J (1998) The origins of the unit of nitrogen fixation at the University of Sussex. Notes Rec R Soc Lond 52:355–362

    Article  Google Scholar 

  • Schwarz R, Forchhammer K (2005) Acclimation of unicellular cyanobacteria to macronutrient deficiency: emergence of a complex network of cellular responses. Microbiology 151:2503–2514

    Article  CAS  PubMed  Google Scholar 

  • Takaichi S, Mochimaru M, Maoka T (2006) Presence of free myxol and 4-hydroxymyxol and absence of myxol glycosides in Anabaena variabilis ATCC 29413, and proposal of a biosynthetic pathway of carotenoids. Plant Cell Physiol 47:211–216

    Article  CAS  PubMed  Google Scholar 

  • Thomas J (1970) Absence of the pigments of photosystem II of photosynthesis in heterocysts of blue–green alga. Nature 228:181–183

    Article  CAS  PubMed  Google Scholar 

  • Trissl HW (1993) Long-wavelength absorbing antenna pigments and heterogeneous absorption bands concentrate excitons and increase absorption cross section. Photosynth Res 35:247–263

    Article  CAS  PubMed  Google Scholar 

  • Wolk CP (1996) Heterocyst formation. Annu Rev Genet 30:59–78

    Article  CAS  PubMed  Google Scholar 

  • Ying L, Huang X, Huang B, Xie J, Zhao J, Zhao XS (2002) Fluorescence emission and absorption spectra of single Anabaena sp. strain PCC7120 cells. Photochem Photobiol 76:310–313

    Article  CAS  PubMed  Google Scholar 

  • Yokono M, Murakami A, Akimoto S (2011) Excitation energy transfer between photosystem II and photosystem I in red algae: Larger amounts of phycobilisome enhance spillover. Biochim Biophys Acta 1807:847–853

  • Yokono M, Uchida H, Suzawa Y, Akiomoto S, Murakami A (2012a) Stabilization and modulation of the phycobilisome by calcium in the calciphilic freshwater red alga Bangia atropurpurea. Biochim Biophys Acta 1817:306–311

    Article  CAS  PubMed  Google Scholar 

  • Yokono M, Tomo T, Nagao R, Ito H, Tanaka A, Akimoto S (2012b) Alterations in photosynthetic pigments and amino acid composition of D1 protein change energy distribution in photosystem II. Biochim Biophys Acta 1817:754–759

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by JSPS KAKENHI Grant Number 16H06553 to S. Akimoto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Akimoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onishi, A., Aikawa, S., Kondo, A. et al. Energy transfer in Anabaena variabilis filaments adapted to nitrogen-depleted and nitrogen-enriched conditions studied by time-resolved fluorescence. Photosynth Res 133, 317–326 (2017). https://doi.org/10.1007/s11120-017-0352-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-017-0352-4

Keywords

Navigation